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Abstract

Railways play a crucial role in transport. However, unforeseen events in the form of disruptions
drastically affect performance. A literature review reveals that research already addresses
detecting and dealing with disruptions. However, no approach considers these tasks within the
planning process of a timetable. This thesis bridges this gap by integrating increasing resilience in
the process. Hence, we propose an iterative approach for creating timetables from scratch while
identifying and addressing the critical disruption. We use a demand-centred performance metric
based on generalised travel time, providing a unified objective. Aiming for a holistic approach,
we include passenger routing, track assignment and rolling stock circulation. We introduce the
concept of the Train Slot Sequence (TSS) with which we reduce complexity by restricting trains
to time windows. We apply logical-Bender’s decomposition using TSS, splitting the task into
a Mixed Integer Program (MIP) and a Boolean Satisfiability Problem (SAT). Furthermore, we
cannot rely on predefined scenarios given the context. Therefore, we present a primal-dual
algorithm identifying critical disruptions while considering all responses.

We conduct a case study with real-life data of RhB, a Swiss railway company. Our experiments
indicate that solving the timetabling model directly with a commercial solver is only appropriate
for small instances. However, we quickly obtain high-quality solutions with a fix-and-dive
heuristic. Furthermore, within the case study, our propositions increase resilience. For example,
in an instance based on artificially generated demand, performance increases from 35.9% to
58.4 %, improving the remaining performance by a factor of 1.63. Another valuable insight is that
our procedure to identify and assess critical disruption also works for simultaneously occurring
disruptions. We apply the approach to nine instances that vary in demand and trains. The
results reveal that the proposition performs as intended. However, solutions differ in resilience
against critical disruptions and regular performance. Thus, determining the appropriate solution
can require a trade-off. Nevertheless, a practitioner can select suitable solutions since we provide
all created results.
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Zusammenfassung

Eisenbahnen spielen eine entscheidende Rolle im Verkehrswesen. Unvorhergesehene Ereignisse in
Form von Störungen beeinträchtigen jedoch die Performance. Ein Betrachten der Literatur zeigt,
dass sich die Forschung bereits mit dem Erkennen von und dem Umgang mit Störungen befasst.
Es gibt jedoch keinen Ansatz, der diese Aufgaben als Teil des Planungsprozesses berücksichtigt.
Die vorliegende Arbeit schliesst diese Lücke, indem sie die Steigerung der Resilienz in den
Planungsprozess integriert. Um Fahrpläne von Grund auf zu erstellen und gleichzeitig kritische
Störungen anzugehen, schlagen wir einen iterativen Ansatz vor. Es wird ein nachfragebasierter
Leistungsindex, welcher auf der generalisierten Reisezeit aufbaut und ein einheitliches Ziel darstellt,
vorgeschlagen. Vorgeschlagen wird ein ganzheitlicher Ansatz, welcher die Fahrgastlenkung, die
Gleiszuweisung und den Fahrzeugumlauf einbezieht. Um die Komplexität zu reduzieren, wird das
Konzept der Train Slot Sequence (TSS) eingeführt, welches die Züge innerhalb eines Zeitfensters
beschränkt. Mit Hilfe von TSS kann die logische Bender-Dekomposition angewendet werden,
so dass die Problemstellung in ein Mixed Integer Program (MIP) und ein Boolean Satisfiability
Problem (SAT) aufteilbar ist. Aus dem Kontext ergibt sich weiter, dass keine vordefinierte
Störungsszenarien verfügbar sind. Daher wird ein primal-dual -Algorithmus vorgestellt, der
kritische Störungen identifiziert und verfügbare Gegenmassnahmen berücksichtigt.
Es wird eine Fallstudie mit realen Daten von der RhB, einer Schweizer Eisenbahngesellschaft,
durchgeführt. Experimente zeigen, dass das direkte Lösen des Fahrplanmodells mit einem kom-
merziellen Solver nur für kleine Instanzen geeignet ist. Mit einer Fix-and-Dive-Heuristik können
jedoch schnell hochwertige Lösungen erzeugt werden. Außerdem erhöht der Ansatz innerhalb
der Fallstudie die Resilienz. In einer Instanz, die auf künstlich erzeugter Nachfrage basiert,
steigt der Leistungsindex beispielsweise von 35,9% auf 58,4%, was die verbleibende Leistung
um den Faktor 1,63 verbessert. Eine weitere wertvolle Erkenntnis ist, dass das Verfahren zur
Identifizierung und Bewertung kritischer Störungen auch bei gleichzeitig auftretenden Störungen
funktioniert. Der Ansatz wird auf 9 Instanzen angewendet, die sich in Nachfrage und Anzahl
Zügen unterscheiden. Die Ergebnisse zeigen, dass der Vorschlag wie beabsichtigt funktioniert.
Allerdings unterscheiden sich die Lösungen im Verhältnis von Resilienz gegenüber kritischen
Störungen und der regulären Leistung. Daher kann die Bestimmung der geeigneten Lösung
einen Kompromiss erfordern. Allerdings kann ein Anwender geeignete Lösungen auswählen und
vergleichen, da alle Zwischenergebnisse ausgegeben werden.
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3 Bounds per activity in the EAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Input parameters to calculate the TSS per train category. . . . . . . . . . . . . . . . . . 49
5 Available rolling stock, based on RhB (2021a). . . . . . . . . . . . . . . . . . . . . . . . 49
6 Results for solving the SSSP with passenger trains and no-conflict. . . . . . . . . . . 53
7 Results for solving the SSSP with passenger trains. . . . . . . . . . . . . . . . . . . . . 53
8 Results for solving the SSSP with passenger and cargo trains. . . . . . . . . . . . . . . 54
9 Number of required variables in the M-SSSP in the OM. . . . . . . . . . . . . . . . . . . . 55
10 Average computation time in seconds for one iteration. . . . . . . . . . . . . . . . . . . 69





      

List of Figures

1 Disruptions per year in absolute numbers and hours for the Dutch railway network (note
the effect of Covid-19 in 2020/2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Planning stages and phases alligned with the time frame. . . . . . . . . . . . . . . . . . 4
3 Bathtub model illustrating system performance during a disruption. . . . . . . . . . . . 9
4 The performance metric visualised with the resilience bathtub curve. . . . . . . . . . . 18
5 The TSSs to couple the line plan, timetable and infrastructure. . . . . . . . . . . . . . . 20
6 An overview on the Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 An illustration of how Sκ captures the route of κ. . . . . . . . . . . . . . . . . . . . . . 24
8 Example SSN where based on the example line in Fig. 5. . . . . . . . . . . . . . . . . 26
9 The first three steps of the EAN creation for one Zκ,π. . . . . . . . . . . . . . . . . . . 27
10 An excerpt of an EAN for two Zκ,π with headways. . . . . . . . . . . . . . . . . . . . . 28
11 Example EAN and TFN for two Zκ,π ∈ Yactive. . . . . . . . . . . . . . . . . . . . . . . 32
12 Primal-Dual algorithm for finding the most critical disruption. . . . . . . . . . . . . . . 42
13 The heuristic procedure implemented in the OM. . . . . . . . . . . . . . . . . . . . . . . 43
14 Macroscopic view on the infrastructure network. . . . . . . . . . . . . . . . . . . . . . . 45
15 Network of the Rhaetian Railway (RhB) (RhB, 2021b) with an excerpt of the infrastructure. 47
16 Bus lines available as response measures. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
17 ODartificial visualised with a macroscopic view of the infrastructure. . . . . . . . . . . . 50
18 ODsubset visualised with a macroscopic view of the infrastructure. . . . . . . . . . . . . 51
19 Example timetable as 3D-time-space diagram, where z is time in seconds and x and y

are coordinates in space (available as html (Appendix A.3)). . . . . . . . . . . . . . . . 55
20 Results of the primal-dual algorithm (available as html (Appendix A.3)). . . . . . . . 57
21 Location of Hcritical depending on no-buses/five-buses/ten-buses. . . . . . . . . . . 58
22 Bathtub curves for Hcritical (available as html (Appendix A.3)). . . . . . . . . . . . . . 59
23 Effect of enforcing redundant connections on passenger flow . . . . . . . . . . . . . . . 60
24 Bathtub curves for Hcritical with K = {2} (available as html (Appendix A.3)). . . . . . 61
25 Passenger flow and locations of h ∈ H for two simultaneous disruptions. . . . . . . . . 62
26 Performance P during 10 iterations with no-conflict and five-buses (available as

html (Appendix A.3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
27 Performance P during 10 iterations with passenger trains and five-buses (available

as html (Appendix A.3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
28 Performance P during 10 iterations with passenger, cargo and auto-trains (available

as html (Appendix A.3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
29 Box-plots to summarise the computation time per iteration (available as html (Ap-

pendix A.3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
30 Stations suitable for transferring in the OM are marked blue. . . . . . . . . . . . . . . . 84
31 Stations suitable for transferring in the AM are marked blue. . . . . . . . . . . . . . . . 84
32 Stations suitable for short turning trains in the OM are marked blue. . . . . . . . . . . . 85





      

Acronyms

EAN Event Activity Network. v, vii, viii, 22, 23, 26–29, 32, 35, 39, 46
SSN Slot Sequence Network. v, viii, 22, 23, 25, 26, 29
TFN Train Flow Network. viii, 32–35
AM Assessment Module. vi, viii, 21, 38, 41, 47, 52, 56, 58, 63, 68, 73, 74, 84
CGN Change & Go Network. 5
CNF Conjunctive Normal Form. 34
DAG Directed Acyclic Graph. 27
Dual-SSSP Dual Slot Sequence Selection Problem. 38, 40–42, 56–58
IM Infrastructure Manager. 17, 72
LPP Line Planning Problem. 5–8
M-SSSP Master Slot Sequence Selection Problem. v–vii, 29–31, 35, 36, 38–40, 44, 52, 53, 55, 59,

66, 85
MIP Mixed Integer Program. i, ii, 5–8, 13, 14, 34, 36, 37, 44, 53–56, 68, 70
OM Optimisation Module. v–viii, 21, 23, 29, 35, 38, 43, 47, 52, 54–56, 58, 60, 62, 63, 65, 68, 73,

74, 84, 85
PESP Periodic Event Scheduling Problem. 6, 25, 26, 34, 46
PTN Public Transport Network. 5
Primal-SSSP Primal Slot Sequence Selection Problem. vi, 38–42, 47, 56–58, 61, 74
RQ (Main) Research Question. 3, 70
RhB Rhaetian Railway. i–iii, viii, 45–50, 52, 60, 62, 63, 70, 73
S-SSSP Sub Slot Sequence Selection Problem. v, 29, 30, 32–36, 39, 44, 52–54, 63, 74, 85
SAT Boolean Satisfiability Problem. i, ii, v, 6, 7, 34, 35, 44, 70, 85
SI Service Intention. 2, 19, 70, 72
SQ Sub-Question (of the Research Question). 3, 4, 16, 18, 43, 70–73
SSSP Slot Sequence Selection Problem. v–vii, 29, 36–38, 40, 43, 52–54, 58, 59, 64, 74, 75
TOC Train Operating Company. v, 17, 19, 23, 48, 72
TPE Train Path Envelope. 2, 19, 70, 72
TSS Train Slot Sequence. i, ii, v–viii, 2, 16, 19–23, 25, 29, 30, 39, 48, 49, 70, 72, 74
TTP Time Tabling Problem. 6–8, 17, 21–23, 26, 28, 29, 32, 34, 36
VSP Vehicle Scheduling Problem. 7, 8





      

1 Introduction

Initially, we briefly introduce the thesis. We begin with stating our motivation and describing
the problem in Section 1.1. Next we summarise our contributions in Section 1.2, before defining
the research questions in Section 1.3. Finally, we give a brief outline on the structure of the
thesis in Section 1.4.

1.1 Motivation and Problem Statement

Railway networks are an essential part of the transport infrastructure today and in the future.
Because of social and economic dependencies, the networks must provide high-quality service and
operate as reliably as possible. Unexpected blockages of open tracks, station tracks, or complete
stations during a specific period represent typical disruptions in railway operations.

While myriad reasons can cause disruptions, the impact is generally identical. The lost capacity
due to blocked and unavailable infrastructure affects the performance drastically. Although the
severity of the disruption can vary, it is frequently no longer possible to operate the original
timetable. Therefore, the strategically or tactically designed timetable has to be adapted on
short notice to provide an alternative form of service in such a situation (Bešinović, 2020).

Figure 1: Disruptions per year in absolute numbers and hours for the Dutch railway network
(note the effect of Covid-19 in 2020/2021).

Source: Rijden de Treinen (2022)

A common observation with disruptions is their growing number with increasing network utilisa-
tion (Bešinović, 2020). Using the Dutch railway network as a representative illustration, Fig. 1
indicates that the number of disruptions has gradually increased until Covid-19 caused a drastic
reduction in demand (Bešinović and Szymula, 2021). Given lower demand, fewer services operate,
consequently reducing the total number of disruptions.





      

Thereby, when aiming for high performance, considering disruptions is crucial. Several approaches
and strategies to cope with known disruption exist (Ghaemi et al., 2017b; Zhu and Goverde, 2021,
2020a,b; Bešinović et al., 2020). Besides, it is possible to assess resilience with network-wide
approaches to identify critical infrastructure (Szymula and Bešinović, 2020; Bababeik et al., 2017).
However, less attention has been directed towards the integration of dealing with disruptions in
earlier planning phases (Bešinović, 2020).

This thesis aims to address this gap with a methodology that integrates disruptions in the early
planning stages. The proposed methodology aims to increase the system’s resilience against the
most critical disruption (i.e. the one with the highest impact on performance). Consequently,
the resilience of a timetable can be increased when it is developed.

1.2 Our Contributions

Based on the previously defined research gaps, we now provide a brief overview of our approach
before summarising the key contributions.

Essentially, railway planning and enhancing resilience share a common objective in optimally
utilising and allocating (available) infrastructure and resources. While the former seeks to provide
the best possible solution (e.g., while exploiting all infrastructure (Fuchs et al., 2021)), the latter
focuses on reducing the impact of disruptions (e.g., delays and cancelled trains (Zhu and Goverde,
2021)). Consequently, combining both requires a holistic perspective and a detailed incorporation
of the dynamics of a railway system (Bešinović, 2020). We, therefore, include the available
infrastructure on a mesoscopic level (de Fabris et al., 2014; Wüst et al., 2019b) and consider
the task of routing trains jointly during timetabling similar to Fuchs et al. (2021) to exploit the
available infrastructure. Furthermore, to follow and enhance the state-of-the-art approaches, our
method should be capable of (re-)routing passengers (Zhu and Goverde, 2020b) and accounting
for vehicle rotations and capacity (Veelenturf et al., 2017). Eventually, integrating alternative
modes such as buses as responses towards disruptions is also desirable (Borecka and Bešinović,
2021; Jin et al., 2014).

Interestingly, many timetabling models to address all or a subset of these requirements already
exist (Schiewe, 2020; Polinder et al., 2021; Fuchs et al., 2021). However, including these
requirements jointly is leading to a challenging problem, which has not been solved satisfactorily
(Schiewe, 2020). Therefore, we propose addressing the problem with a novel approach that defines
a sequence of time slots for each train, the Train Slot Sequence (TSS). The concept of TSS is
similar to the Train Path Envelope (TPE) (Albrecht et al., 2013; Wang et al., 2020) and the
Service Intention (SI) (Caimi et al., 2011b,a; Wüst et al., 2019a), both successfully applied to
railway timetabling.

We use these TSSs to define departure, arrival and intermediate pass-through times as time
windows instead of exact timestamps. Given TSS, we can reduce the complexity of the integrated
timetabling problem such that we can solve real-life instances. Additionally, as we are considering





      

resilience during the early stages of the planning processes, we can not rely on predefined
disruption scenarios (Szymula and Bešinović, 2020). Thus, we extend our model to identify and
accurately assess the critical disruption (i.e., the one with the highest impact) without a given
input. Subsequently, our methodology integrates resilience into the railway planning process and
yields a holistic and accurate result. We can summarise our contributions as follows:

• Integrating resilience into the early stages of the planning process
• Jointly identifying the critical disruption and the best response
• Breaking down the complexity of integrated timetabling
• Applying the proposition to a real-life case study

Subsequently, we proceed to define the research questions.

1.3 Defining the Research Questions

Based on the stated research gap and the contributions, we may formulate the (Main) Research
Question (RQ) and the Sub-Question (of the Research Question) (SQ) form the thesis’s core:

(Main) Research Question (RQ) Which optimisation approach is suitable to assess and enhance
the resilience of a railway network during the strategical and tactical planning phases?
SQ 1 What state-of-the-art metrics/measures are suitable to assess the resilience of a railway

timetable during timetabling?
SQ 2 How can we characterise disruptions such that we can assess them during the timetabling

process?
SQ 3 How to mathematically model the requirements and resources of the different stakeholders

to include them as constraints?
SQ 4 What are the benefits when using the developed optimisation approach to enhance the

resilience of an existing railway system?

The RQ and SQs guide the thesis in the following. The RQ provides the main motivation of the
thesis and we will develop the required methodology in Section 3, before applying it in the case
study Section 4. Furthermore, we will address the SQ 1, 2 and 3 in Section 3 based on the
literature reviewed in Section 2. The computational experiments that are part of the case study
in Section 4 provide us with insights to address the SQ 4. Furthermore, these questions allow us
to draw a conclusion and identify future work in Section 5.

1.4 Outline of the Thesis

The remainder of this thesis is structured as follows; Section 2 provides the necessary background
on the railway planning processes and resilience in railways, to then identify the research gap.
Subsequently, we propose our methodology in Section 3, which we then apply and assess in the
case study in Section 4. Eventually, we draw a conclusion in Section 5, where we address the
research questions and also outline future research possibilities.





      

2 Background

This section provides technical background and an overview of the-state-of-the-art. We focus on
investigating SQ 1, SQ 2 and SQ 3, since these SQ require literature background. In Section 2.1,
we provide information on the general planning process in railway systems. Complementary, in
Section 2.2, a review on resilience assessment and disruption management in railway systems
follows. Eventually, we identify the research gap in Section 2.3.

2.1 The Planning Process in Railway Systems

Planning a railway system is a challenging and interconnected process, so the planning process is
usually divided into a sequence of stages (Lusby et al., 2018). The stages in Fig. 2 represent the
general planning stages of railway systems according to Liebchen and Möhring (2004) and Lusby
et al. (2018). Following the notion of Lusby et al. (2018), the planning stages span over the three
phases of strategical, tactical, and operational planning.

Figure 2: Planning stages and phases alligned with the time frame.
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While strategical planning covers network and line planning, the tactical phase encompasses
timetabling and vehicle and crew scheduling. Finally, real-time traffic management is contained
by the operational planning phase and is performed at present (Lusby et al., 2018). Since any
modification of the available infrastructure is outside this thesis’s scope, we limit the considered
stages to the stage of line planning and onward. Furthermore, as we aim to enhance the resilience
of a railway system during its planning phase, we do not consider the stages of crew scheduling
and real-time management tasks. Consequently, we briefly introduce line planning (Section 2.1.1),
timetabling (Section 2.1.2), and vehicle scheduling (Section 2.1.3) in the following.





      

2.1.1 Line Planning

The task of line planning covers the stage of determining a line plan by solving the Line Planning
Problem (LPP). A line represents a group of train services that serve a defined sequence of stations.
In general, a solution to the LPP specifies which lines should be operated at which frequency.
Consequently, a line plan generally relies on a periodic pattern, such that the frequencies define
the number of train services per line and period. Based on the frequency and assigned vehicle, it
is possible to assign a passenger capacity to the chosen lines. Predominantly, passengers may
only be routed via a line if sufficient capacity is available. A wide variety of approaches to tackle
the LPP exist. We refer to Schöbel (2012) for a general overview.

Most LPP seek to minimize the passenger discomfort by finding a line plan which minimizes the
total travel time. Schöbel and Scholl (2006) use the Public Transport Network (PTN) to route
passengers along activated lines in a Mixed Integer Program (MIP). However, as the PTN only
implicitly accounts for dwell/wait and transfer times, Schmidt and Schöbel (2015a) propose the
Change & Go Network (CGN), which extends the PTN with dwell/wait and transfer arcs.

Based on the CGN Goerigk and Schmidt (2017) propose a LPP-model that minimizes travel times
while demanding that all passengers travel via the shortest available path. However, the resulting
LPP is a bilevel-MIP which is challenging to solve. Consequently, Goerigk and Schmidt (2017)
propose a genetic algorithm to efficiently obtain solutions of reasonable quality.

Almost all proposed models start from a pool of candidate lines of which a subset forms the
resulting line plan. Naturally, the pool of candidates affects the solution, as it only contains lines
that are part of the pool. Gattermann et al. (2017) provide methods to generate candidate line
pools with algorithmic methods. Besides, Borndörfer et al. (2007) formulate a column generation
approach that does not provide integer frequencies but also alleviates the need for a line pool
because lines are defined during the column generation process.

Note that it is also possible to consider vehicles during line planning, as demonstrated by Goossens
et al. (2006); The formulated LPP considers the available vehicles and limits the line plan to not
require more vehicles than available. Alternatively, Friedrich et al. (2017) propose to include the
cost to operate the line plan in the LPP. Consequently, the resulting line plan satisfies passengers
by minimising travel times and operators by respecting the available budget.

2.1.2 Timetabling

Following the scope of this thesis, most of the reviewed literature focuses on periodic railway
timetabling. Note, however, that timetabling does not necessarily require periodicity. For an
overview of periodic and non-periodic timetabling, we refer to Caimi et al. (2017). Further
resources for periodic timetabling are provided by Liebchen and Möhring (2004) and Peeters
(2003), with the former providing an extensive overview while the latter yields precise insights.





      

We will refer to the task of periodic timetabling as the Time Tabling Problem (TTP) from here
on. A key contribution to the TTP is the Periodic Event Scheduling Problem (PESP) introduced
by Serafini and Ukovich (1989). Although the original formulation did not aim towards railways,
many adaptations rely on the PESP formulation of Serafini and Ukovich (1989). While extensively
researched, finding a timetable is still challenging, as is apparent when considering the proposed
solutions. The majority of the approaches rely on MIP-formulations, which can be divided into
the node potential formulation (Kroon et al., 2014; Caimi et al., 2011a) and the arc tension
formulations (Peeters, 2003; Liebchen and Peeters, 2009; Herrigel et al., 2018).

Liebchen and Peeters (2009) examine various cycle bases for the cycle-based MIP and contrast the
performance with the node potential formulation. Their result that the cycle-based formulation
exceeds the node potential MIP is supported by the findings of Herrigel et al. (2018). To
increase the performance of the cycle-based MIP, Herrigel et al. (2018) propose adding services
incrementally. Since the already added services are fixed in time, the search space is limited,
yielding considerable speedup potential. However, increasing the slack on the already added
services is required when conflicts arise. While Herrigel et al. (2018) demonstrate the benefits,
they also show that the regular cycle-based MIP outperforms their approach in some cases.

Contrasting with already introduced approaches, Zhang et al. (2019) suggest using a reformulated
approach using time-space graphs and Lagrangian multipliers. Another approach for finding
solutions to the TTP is to encode it as a Boolean Satisfiability Problem (SAT) as proposed by
Großmann (2011). Using this encoding, Kümmling et al. (2015) show that it is possible to find
solutions for real-life instances in an acceptable time. Another advantage reported by Kümmling
et al. (2015) is the capability to find conflicting requirements such that the planners might relax
some of them in order to find a feasible solution.

Furthermore, Großmann (2016) extends the SAT-encoding such that it is possible to consider
more than one available routing option or to insert additional trains in a timetable. With a
similar aim, Fuchs et al. (2021) extend the SAT-encoding such that it is possible to route trains
during timetabling, exploiting all available infrastructure. Combining SAT, and MIP, Borndörfer
et al. (2020) provide a concurrent approach to find superior solutions on benchmark instances.
The concurrent solver also uses the algorithm provided by Goerigk and Liebchen (2017), which
allows improving a given feasible solution using the modulo network simplex.

Like the LPP, the TTP frequently minimises total travel time. Commonly, passengers are assigned
to the trains before solving the TTP (see Peeters (2003); Fuchs and Corman (2019); Herrigel
et al. (2018)). However, as Schmidt and Schöbel (2015b) show, the travel times can depend
on the found TTP solution. Furthermore, Schmidt and Schöbel (2015b) show that considering
the routing of passengers during TTP can lead to superior solutions. Borndörfer et al. (2017)
provide further insights and show that pre-assigning passenger routes can lead to infinitely worse
solutions, when compared to a joint approach.

Robenek et al. (2016) show that passenger routes may also be considered when non-periodic
TTP-instances are tackled. While all the above formulations to route passengers during timetabling





      

rely on MIP formulations, Gattermann et al. (2016) propose a max-SAT encoding for this purpose.
Polinder et al. (2021) target the step of strategical timetabling by providing a MIP formulation
that allows planners to assess the trade-off between total travel time and service regularity. Note
that none of the above approaches considers the capacity of the vehicles.

Besides total travel time, robustness against delays is also a conceivable objective for railway
timetabling, as shown by Burggraeve et al. (2017), who use a MIP-formulation to maximise the
minimal buffer time to provide robust solutions to the TTP. Similarly, Bešinović et al. (2016)
provide robust non-periodic timetables by iterating between micro-and macroscopic timetabling.
Another approach aiming to increase robustness reduces the minimum cycle time, as suggested
by Zhang and Nie (2016). Sparing and Goverde (2017) expand the approach to handle flexible
train orders, running and dwell times, and overtaking locations.

Caimi et al. (2011a) introduce event flexibility to periodic timetabling. As a result, it is possible
to generate regular timetables with flexible events. Another approach for introducing flexibility
is the proposition of Kroon et al. (2014), leading to flexible connections. These allow selecting
connections at stations such that the time for transfers and the number of vehicles can be reduced.
Fuchs and Corman (2019) implement these flexible connections and report similar findings.

2.1.3 Vehicle Scheduling

The stage of vehicle scheduling is frequently also referred to as vehicle rostering. We introduce
the term Vehicle Scheduling Problem (VSP) to encompass both. Given a timetable, Peeters and
Kroon (2008) propose an approach to minimise the number of circulating rolling stock units. The
Vehicle Scheduling Problem (VSP) is a subsequent step to LPP and TTP. Hence the available time
horizons are shorter. Giacco et al. (2014) propose an approach capable of scheduling vehicles
and integrating the maintenance intervals into the resulting schedule. Luan et al. (2017) aim
for a similar result by combining vehicle scheduling with the optimal planning of preventive
maintenance slots.

Lusby et al. (2018) highlight that a timetable’s robustness also depends on the robustness of the
vehicle schedule. Tréfond et al. (2017) provide an approach, which combines optimisation and
simulation to provide robust VSP solutions.

2.1.4 Advantages of (partially) Integrated Planning for Railways

So far, we considered the stages of LPP, TTP and VSP independently. However, it is not a
requirement to address the stages individually; in fact, as shown by Schiewe (2020), considering
the stages in an integrated approach enables exploitation of additional optimisation potential,
leading to superior solutions. However, since all stages are already challenging when considered
independently, a joint consideration imposes an even greater challenge (Liebchen and Möhring,
2004). Characterised by the trade-off between required effort against solution quality, Schiewe
(2020) suggests three schemes summarised by Table 1:





      

Table 1: Schemes to jointly address multiple planning stages in railway planning.

scheme potential solution quality computational effort

integrated best (optimal) high / intractable
iterative average medium
sequential poor low

Source: Summarised from Schiewe (2020)

Generally, any previously introduced LPP, TTP, and VSP approach could be part of a sequential
approach. For instance, Michaelis and Schöbel (2009) provide such a sequence of models. By
rearranging the order of planning stages, Michaelis and Schöbel (2009) can provide improved
solutions for a real-life bus network. Pätzold et al. (2017) also rearrange the prevalent order of
planning stages; thereby, the authors can look ahead and limit the set of candidates in the line
pool to a set of promising ones, leading to an overall improved solution.

Schöbel (2017) proposes the Eigenmodel, which allows the formalisation of iterative and sequential
approaches. Fuchs and Corman (2019) implement such an iterative model to iterate between
the stages of LPP, TTP and VSP. Similarly, Burggraeve et al. (2017) provide an iterative approach
enhancing the LPP with robust timetables in the TTP. Fuchs et al. (2021) also enhance the LPP
with an iterative approach which allows detecting and addressing conflicts in the subsequent
TTP stage. Besides Fuchs et al. (2021) exploit the available infrastructure already during the
LPP as their TTP considers all available train routes. Finally, Yan and Goverde (2019) use an
iterative approach to combine LPP with TTP on strongly heterogeneous railway lines with direct
connections.

Lübbecke et al. (2018) propose an MIP model that fully integrates LPP, TTP and VSP. However, it
is not possible to solve the integrated model directly due to the inherent complexity.

2.2 Addressing Resilience and Disruptions in Railway Systems

Railways rely on specific infrastructure. Besides, as seen in the previous chapter, planning a
railway system is a sophisticated process. As a consequence of these two attributes, railways
are specifically prone to unexpected events, which is why handling these unexpected events
receives considerable attention in research, as we see in Section 2.2.2. However, before we
discuss existing approaches to deal with unexpected events, we characterise disruptions and
introduce resilience in the context of railways in Section 2.2.1. Furthermore, we investigate
existing network-wide approaches in Section 2.2.3 and scenario-based approaches in Section 2.2.4
before a brief introduction of network interdiction in Section 2.2.5 follows.





      

2.2.1 Characteristics of Resilience and Disruptions in Railway Systems

In general, not every unexpected event represents or unfolds towards a disruption. According to
Bešinović (2020), unexpected events during railway operations can be classified into three levels
according to their severity. Disturbances represent minor variations in operations. Disruptions
occur due to longer-lasting technical failures and bad weather conditions. Disasters symbolise
the worst-case induced by extreme events, for example, floods or earthquakes. Bešinović (2020)
defines the resilience of a railway transport system as its capability to effectively cope with
disruptions and disasters while still providing a satisfactory level of service under ordinary
conditions. Furthermore, resilience is a system-wide concept.

Figure 3: Bathtub model illustrating system performance during a disruption.
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As indicated in Fig. 3, resilience encompasses the distinct phases of survivability, response and
recovery (Bešinović, 2020). Furthermore, vulnerability is a concept closely related to resilience:

Survivability describes the transition of the system from the planned system to the disrupted
one. Depending on the system and the disruption, this transition results in different ways
of degradation.
Response defines the set of actions taken quickly after a disruption to provide the best level
of service. Thus, responses can be vital to reduce vulnerability.
Recovery covers the second transition, where the system transitions from the disrupted
back to the planned state. Again, the way how the system reverts to the initial performance
depends on the system and the characteristics of the disruption.
Vulnerability describes the lost performance between the planned performance and the
performance during the disruption. Thus, vulnerability is closely related to resilience.
Mitigation aims to increase resilience by adapting the infrastructure. Ideally, such an
adaptation relieves the current most vulnerable elements.





      

For a more detailed definition of these and additional terms, we refer to Bešinović (2020). Several
metrics to evaluate the resilience of transport networks have been proposed (Zhou et al., 2019).
Following Zhou et al. (2019), these are either topological, attributes-based or performance-based
metrics. We will further elaborate them in Section 2.2.3.

As mentioned, vulnerability encompasses the reduced performance of the network when the
system is in a stable disrupted state, see Fig. 3. Consequently, vulnerability neglects the duration
of the transition phases to and from the disrupted state for both survivability and recovery
(Szymula and Bešinović, 2020). Szymula and Bešinović (2020) state, that vulnerability represents
one of resilience’s (static) elements. Hence, vulnerability is a suitable concept if the scope is
primarily on performance during the response phase. However, if one also aims to incorporate the
dynamic (non-static) elements of resilience, vulnerability is not a suitable indicator. For further
background on different definitions of vulnerability, we refer to Mattsson and Jenelius (2015).

Ghaemi et al. (2017b) also suggest using the bathtub model when dealing with railway’s disruptions
and divides a disruption into the three phases given in Fig. 3. When combining the two suggested
models of Ghaemi et al. (2017b) and Bešinović (2020), we see that the first phase covers
survivability, while the second phase represents the response, and the third phase is the recovery.
Moreover, as depicted in Fig. 3, Ghaemi et al. (2017b) also suggest which form of the timetable
is required during which phase.

2.2.2 Disruption Management and Resilience in Railway Systems

Based on the definitions of resilience and disruptions, we can identify how disruptions and resilience
are addressed in current research. In general, two research streams, Disruption Management
(Ghaemi et al., 2017b) and Enhancement of Resilience (Zhou et al., 2019) can be identified. In
the following, we establish the link between these two.

Following Zhou et al. (2019), when Enhancement of Resilience is the aim, the considered time
scope as described in the planning process earlier is frequently strategic. On the contrary,
Disruption Management generally describes the act of focussing on a particular unexpected
event occurring at present (Dekker et al., 2021). Thus, the emphasis is primarily on operative
decision-making (Lusby et al., 2018).

However, strictly separating Enhancement of Resilience and Disruption Management and labelling
the former as proactive and the latter as reactive is imprecise. As demonstrated by Szymula
and Bešinović (2020), assessing vulnerability requires an appropriate consideration of response
measures, as otherwise, vulnerability is overestimated. Besides, resilience can also be enhanced
when scenario specific studies part of Disruption Management are conducted (Bešinović, 2020).
Furthermore, Disruption Management also contains a proactive component in the form of
contingency planning. A contingency plan is a predetermined procedure guiding the response to
a certain disruption (Dekker et al., 2021), thus Disruption Management enhances the resilience
through an increased preparedness of the system.





      

Given that Enhancement of Resilience and Disruption Management are closely related, we no
longer distinguish them by their name. Instead, we consider both fields jointly. Thus, we organise
the remainder of this chapter by distinguishing between Network-wide approaches in 2.2.3 and
Scenario based-approaches in 2.2.4. Finally, we briefly introduce the topic of network interdiction
in Section 2.2.5.

2.2.3 Network-Wide Approaches to Assess and Enhance Resilience

In their review, Zhou et al. (2019) provide a detailed overview of the past research of resilience
in transport networks. The review synthesizes metrics and mathematical models to measure
resilience as well as strategies to enhance resilience. As a conclusion of their review, Zhou et al.
(2019) emphasize several future research directions. Furthermore, Zhou et al. (2019) provide
a comprehensive overview of conceivable metrics which are capable of capturing the system’s
performance. These metrics can be divided in Topological Metrics, Attributes-Based Metrics
and Performance-Based Metrics. Topological Metrics consider the network structure and can be
calculated quickly and efficiently, but their expressive power is generally limited. Attributes-Based
Metrics Metrics yield more detailed insight but often fail to capture the dynamics of the system.
textitPerformance-Based Metrics reveal the most information but also require the most effort. In
their review Zhou et al. (2019) state that performance-based metrics are perceived to be superior
to attribute-based metrics in capturing the resilience of a transportation system, and both excel
topological metrics because these do not account for flows in the network.

Bešinović (2020) provides another vital resource, as the review provides a precise definition of
resilience in railway transport (see Fig. 3), tailored explicitly towards railways. Furthermore,
future research directions are given. Note that both the recommendations of Zhou et al. (2019)
and Bešinović (2020) support each other.

According to Bešinović (2020), four approaches apply to assess resilience in railway transport:

1. Topological approaches represent the network on a high level of abstraction and thus,
require limited data, while their use is limited to general characteristics. Identifying a
critical link/component requires the removal of elements individually and hence requires
considerable effort, especially when looking for a combination of critical components.

2. Simulations allow for a much higher level of detail than topological approaches but require
more resources and a detailed understanding of the system’s dynamics. Besides, finding a
combination of critical components still requires an enumeration of all possible combinations.

3. Optimization aims to overcome the shortcomings of the previous two approaches since it
can effectively deal with combinatorial difficulties and consider the system’s dynamics.

4. Data-driven approaches completely contrast with all former ideas, as no system model is
required to gain specific insights on the system’s resilience. However, such approaches are
currently limited on a posterior analysis and require a considerable amount of high-quality
data.

Among the studies that focus on railways, Zhu and Goverde (2017) propose guiding the application
of mitigation measures by using a model that allows firstly measuring the vulnerability of the





      

system and secondly evaluating the effect of a mitigation measure on the network. As the model
uses historical data within a Monte Carlo simulation, the authors can identify the top ten most
vulnerable tracks and compare scenarios with and without mitigation measures.

Intending to increase the resilience of a metro network, Jin et al. (2014) focus on introducing
localised integration with bus services rather than designing a bus network that provides the
demanded resilience against potential disruptions. Essentially, Jin et al. (2014) demand more
capacity on bus services parallel to the disrupted metro lines. Using a two-stage stochastic
programming model, Jin et al. (2014) demonstrate that localised integration with bus services
yields significant improvements for resilience.

With a similar intention, however, addressing pre-defined disruptions in the form of railway
possessions, Borecka and Bešinović (2021) proposes a model that allows to schedule multi-modal
alternative services to bridge the gap in the network. Borecka and Bešinović (2021) further show
that introducing alternative services allows routing affected passengers with a minimal increase
in additional passenger costs.

Bababeik et al. (2017) aim to analyze the vulnerability of railway networks in case of a multi-link
blockage by using flow interdiction. By removing individual links and rescheduling trains in the
residual network, Bababeik et al. (2017) can assess the vulnerability based on the impact on
passenger flows. Furthermore, as the approach only requires partial enumeration, the proposed
heuristic is less demanding. Szymula and Bešinović (2020) propose the Railway Network
Vulnerability Model (RNVM). It allows identifying the weak links in a railway network. The
RNVM provides a vulnerability assessment by identifying the critical links that drastically impact
passengers when disrupted. Although the model itself is an optimization model, identifying
critical links relies on pre-computed values that encompass the attractiveness of a passenger path.
As these values are calculated based on the nominal (non-disrupted) timetable, the resulting
values approximate the actual vulnerability.

All three approaches have in common that they consider vulnerability in some form. As
vulnerability encompasses the remaining performance while disrupted, these assessments allow a
proactive evaluation of railway networks.

2.2.4 Scenario-Based Approaches to Assess and Enhance Resilience

According to Ghaemi et al. (2017b), disruption management in practice is a two-fold approach,
consisting of the preparation of contingency plans and the subsequent implementation of these
when a disruption occurs. As stated previously, a contingency plan is a predetermined procedure
detailing how to handle a disruption at a given location (Dekker et al., 2021). Thus, although
disruption management generally focuses on dealing with disruptions on the operational level, the
preparation of contingency plans increases preparedness against predefined disruptions (Bešinović,
2020). However, as Ghaemi et al. (2017b) stated, the effects and applicability of contingency plans
as a scenario-based approach are limited, especially given the theoretically endless combinations
of failures and the increasing utilisation of railway infrastructure.





      

Note that not all failures require an adaptation of the timetable. For example, in cases where
the impacts are only minor, the robustness of the timetable might suffice to absorb the adverse
effect (Ghaemi et al., 2017b). Besides, minor adversity might be resolved satisfactorily using
real-time rescheduling, see Cacchiani et al. (2014) for more details.

In contrast, Dekker et al. (2021) introduce the term of out-of-control situations, which occur
due to disasters or drastic propagation of adverse effects caused by disruptions. Consequently,
out-of-control situations are among the most critical forms of disruption scenarios, where due to
the lack of overview and information, a significant section of the railway system is inoperable.
A common factor is that most of the required resources (e.g., infrastructure, trains) are still
available in these situations. Nevertheless, dispatchers are no longer able to take adequate
measures (Dekker et al., 2021).

Dekker et al. (2021) propose to deal with such situations by decoupling the disrupted network
sections from the unaffected remainder and using two different paradigms to operate the sections.
First, while the unaffected section operates following the timetable and is decoupled, the second
and affected section relies on complexity science’s self-organising principles.

Apart from these edge cases, scenario-based approaches focus on addressing and reducing the
impact on the performance of known disruptions. Note that only a few propositions address
survivability, response and recovery as most focus on the isolated response (Ghaemi et al.,
2017b). For a general overview, we refer to Ghaemi et al. (2017b), who provide insights into how
Dutch practitioners manage occurring disruptions and an overview of proposed approaches in
the literature.

Among the approaches considering macroscopic infrastructure and using a scenario-based ap-
proach, Louwerse and Huisman (2014) propose a model that adjusts the timetable of a railway
operator when facing major disruptions that may lead to either a partial or a complete blockage
of a railway line. Also focusing on large-scale disruptions, Veelenturf et al. (2016) present a
Mixed Integer Program (MIP) that minimises the number of cancelled and delayed train services
while considering the rolling stock capacity and the possibility to reroute the trains.

Van Aken et al. (2017) introduce the Train Timetable Adjustment Problem, which provides an
alternative timetable with minimal deviation from the original timetable under the consideration
of the given station and open-track possessions. The problem is again formalised as MIP.

In contrast to the previously presented work, Ghaemi et al. (2017a) approach the case of complete
blockages on a microscopic scale. Ghaemi et al. (2017a) propose a MIP model to compute a
disruption timetable with optimal short-turning stations, routes, and platform tracks. However,
given the microscopic nature of the model, it is not applicable to bigger instances.

All these previous approaches have in common that although the passenger routes are affected by
the disruption and subsequent responses, the routes are only considered implicitly. In contrast,
Veelenturf et al. (2017) propose a heuristic approach that considers that passengers adapt their





      

route and provides superior results from a passenger’s perspective. Also intending to design more
passenger-oriented disruption timetables, Zhu and Goverde (2019) propose a dynamic passenger
assignment model that replicates the behaviour of passengers. The model thus provides an
essential step towards the integration of passengers in disruption management, as it makes it
possible to evaluate a disruption timetable, including the passenger’s perspective.

Besinovic et al. (2019) propose an integrated approach to manage disruption within urban railway
systems. Combining a rescheduling model and a model for adjusting passenger flows minimises
the delay experienced by the passengers due to the disruption. Zhu and Goverde (2020b) propose
a MIP model which allows the joint rescheduling of trains and reassignment of passengers. The
objective function minimises the generalised travel time of all passengers and accounts for both
in-vehicle time and waiting time at origin and transfer stations. Zhu and Goverde (2020b)
demonstrate that their proposition provides solutions that yield shorter generalised travel time
when compared with operator-based approaches. Zhu and Goverde (2020a) addresses all stages
of disruption and accounts for the uncertainty of when the system will recover using a rolling
horizon. Based on this approach, Zhu and Goverde (2020a) can provide different transition plans
that do not depend on a predetermined recovery point. The presented approach is hence likely
to provide better solutions with fewer delays and cancellations.

Multiple simultaneous disruptions present a unique challenge, which Zhu and Goverde (2021)
tackle with an approach capable of accounting for multiple disruptions during overlapping
time intervals. Using this model, Zhu and Goverde (2021) show that the joint consideration
of disruptions can find solutions where a sequential approach that resolves the disruptions
individually fails. Furthermore, the joint approach requires fewer adaptions of the original
timetable, providing superior solutions.

In conclusion, scenario-based approaches benefit from an advanced state of research, as many
solutions have been proposed. A further conclusion that can be drawn is that scenario-based
approaches frequently focus on adjusting the timetable to respond to a disruption. These
adjustment problems are usually solved with MIP formulations. The current state of research
yields models that allow assessing disruptions fast and efficiently. Eventually, different objectives
and perspectives (passenger- or operator-oriented) have been suggested and evaluated.

2.2.5 Network Interdiction

The task of interdicting a network can be seen as the antithesis of enhancing its resilience.
Commonly studied in the defence context, network interdiction describes the task of limiting the
operations of the antagonist with specific interdiction measures. These measures aim to alter or
block the network infrastructure of the opposition such that their value diminishes maximally.
For an overview of network interdiction models and algorithms, we refer to Smith and Song
(2020).

Although not directly related to the railway planning process, we may adopt network inter-
diction methods, since the advanced research state provides reliable foundations for railway





      

resilience assessment and enhancement optimisation models, especially when identifying critical
infrastructure.

2.3 Identifying the Research Gap

Building on the previously introduced literature, we highlight identified research gaps to summarise
our literature review.

Integrating resilience into the early stages of the planning process is one of the future research
directions suggested by Bešinović (2020). Some recently proposed approaches allow finding a
critical link (Szymula and Bešinović, 2020), the best response to given disruption (Zhu and
Goverde, 2020b), or the inclusion of bus bridging services to reduce the loss of performance
(Borecka and Bešinović, 2021). However, all of these approaches use an existing timetable as
input, for which the resilience is assessed, while none provides feedback on how to adapt the
timetable. We aim to bridge this gap by providing an approach that integrates optimising the
timetable and increasing resilience.

Besides, jointly identify the critical disruption and the best response is something that has
not been addressed explicitly for railways so far. Current work either limits the scope on a
network-wide perspective or scenario-based approaches. Thanks to the network-wide perspective,
the former allows the identification of vulnerable components, such as critical links (Szymula
and Bešinović, 2020) and yields network-wide performance indicators (Zhou et al., 2019). On the
contrary, scenario-based approaches can yield accurate and detailed information on the effect
of a disruption (Ghaemi et al., 2017b); however, these models all rely on predefined scenarios
(Zhu and Goverde, 2020b; Van Aken et al., 2017). We aim to bridge this gap by providing
an approach that is similar to (Szymula and Bešinović, 2020); however, our model does not
rely on pre-computed link importance. Instead, we propose identifying the critical disruption
while considering that passengers adapt their travel route to react to the disruption. Besides,
we aim to identify the critical disruption under the consideration of typical responses, such as
short turning and cancellations (Ghaemi et al., 2017b). However, as resilience is a system-wide
concept (Bešinović, 2020), we follow the proposition of Borecka and Bešinović (2021) to allow
responding to disruption with an alternative in the form of buses. Consequently, we bridge
the gap between approaches that detect the critical disruptions from a network perspective
and scenario-based approaches for finding the best response. Following a recommendation for
future research by Bešinović (2020), our approach should be capable of coping with single and
simultaneous disruptions.





      

3 Methodology

The methodology consists of four sections. Initially, we provide a brief problem description in
Section 3.1, providing the necessary background and concepts while also addressing SQ 1 and
SQ 2. Next, we introduce and motivate the structure of the overall approach in Section 3.2,
mainly addressing SQ 3. Then we give individual insights into the two modules of the approach
in Section 3.3 and Section 3.4, thus finalising SQ 3.

3.1 Problem Description

Before developing the required methodology, we narrow down the scope and describe all considered
perspectives, allowing us to define the resilience metric. We then propose the Train Slot Sequence
(TSS) as the fundamental data structure.

3.1.1 Narrowing the Scope

In the scope of this thesis, we aim to provide an approach to optimise the performance of the
railway’s system while also assessing and enhancing its capability to cope with disruptions.
Similar to Szymula and Bešinović (2020), we focus on typical disruptions in the form of complete
track blockages. Thus, a disruption represents an infrastructure section (h ∈ H) between two
stations, completely blocked. Let H be the set of all infrastructure sections between stations,
which may be blocked. Then, Hdisrupted ⊆ H yields all the sections that are currently disrupted,
i.e., blocked. Although we limit the size of Hdisrupted to a given budget, kdisrupted, we consider
all disruption scenarios where |Hdisrupted| ∈ [1, kdisrupted]. Hence, we detect both single and
combinations of simultaneous disruptions failures.

As indicated by Szymula and Bešinović (2020), the impact of disruptions can vary depending on
Hdisrupted. Thus, we focus on the most critical disruption, characterised by the Hdisrupted which
causes the highest impact on performance. Ideally, we can adapt the timetable to absorb these
critical disruptions as the impact is reduced. Consequently, we define resilience as the “ability to
absorb the most critical disruptions with as little impact on the performance as possible”.

Zhu and Goverde (2020a) show that the exact beginning and end of a disruption considerably
affect the total impact on performance. However, this requires comprehensive modelling of
survivability and recovery, exceeding the scope of the planning phase. Hence, we limit the scope
of our approach to the response state, as commonly done in this planning phase (Szymula and
Bešinović, 2020; Borecka and Bešinović, 2021). As we are looking at single and simultaneous
disruptions, we select an optimisation approach to overcome the combinatorial challenges of
identifying and addressing Hdisrupted for the critical disruption (Zhou et al., 2019; Bešinović,
2020).

According to Caimi et al. (2017), European Railway timetables are likely to follow a periodic
pattern. Therefore, we also decided to pursue a periodic pattern to ensure that our approaches





      

are compatible and meet the strategic and tactical planning requirements. Therefore, we use T
to denote the interval of the planning period. Furthermore, dt represents a time step.

3.1.2 Considered Perspectives

We explicitly consider the passengers perspective by integrating the demand during T . We
structure the demand in the form of a bipartite, directed graph OD, where O is the set of
all origins while D denotes all destinations. Besides, γod contains the number of passengers p

on the relation od that desire to travel from o to d. Given OD, we integrate the passengers
perspective by evaluating the solution quality considering all γod ∈ OD. Secondly, we account
for the Train Operating Company (TOC) perspectives by considering their intentions in the form
of formalised commercial requirements, characterised by restricted time windows. Additionally,
we also consider the number of available vehicles (given by max(r)) per type of available vehicles
r ∈ R. Furthermore, we also consider the capacity of a vehicle (given by capacity(r)).

Finally, we also consider the Infrastructure Manager (IM) perspective, which has to find a
satisfactory solution for passengers and all TOC, including those that transport other commodities
such as cargo. Note that we only implicitly address the requirements of TOCs that transport other
commodities as passengers, as their requirements are considered in the timetable, but they are
not part of the objective. Besides, the IM aims to utilise the available infrastructure optimally
(Fuchs et al., 2021). Thus, we integrate the task of assigning tracks during TTP, aiming for more
flexibility by including all options.

3.1.3 Defining the Performance Metric

Based on the recommendation by Zhou et al. (2019), we opt for a Performance-Based Metric
to capture the impact of a disruption. Furthermore, given the passenger perspective as part of
the scope, travel time is a natural indicator to evaluate the performance of a timetable. Besides,
travel time is frequently chosen as an objective in both the railway planning process (Caimi et al.,
2017) and the disruption management (Zhu and Goverde, 2020b). Consequently, we select the
generalised total travel time as defined by Zhu and Goverde (2020b) to evaluate the performance
of a timetable.

To define our performance metric, we introduce corresponding notation. Let Lod be the set of
links which are used by γod to travel from o to d. Furthermore, we assign each l ∈ L a duration
wl and weighting factor cl to generalise it. As it is possible, that not all passengers travel on the
same path, we use podl to denote the fraction of γod travelling on a particular l. Consequently, we
can calculate the generalised (total) travel time C as follows:
C =

∑
od∈OD

∑
l∈Lod

codl · wl · podl (1)

C as defined in Eq. (1) enables us to evaluate the performance P of a timetable when looking
for optimal timetables and assessing the impact of disruptions. Typically, for the same OD, a
lower C indicates better P due to reduced generalised travel time. Let Cideal be the generalised





      

travel time for a timetable, where C is as low as possible for the given problem instance. A
trivial example for Cideal is a timetable allowing all passengers to travel on their shortest possible
path. Consequently, Cideal the lower bound of C. To find an upper bound on C, we define
Cworst-case. We consider that passengers will look for an alternative means of transport if C for
this od exceeds a certain limit of generalised travel time given by codmax. This assumption is taken
frequently, (Schmidt and Schöbel, 2015b; Zhu and Goverde, 2020b; Szymula and Bešinović, 2020).
Assuming that we are aware of codmax for all od ∈ OD, we can define Cworst-case as follows:
Cworst-case =

∑
od∈OD

codmax · γod (2)

In essence, Cworst-case in Eq. (2) defines C in the case where no service for any od ∈ OD is
provided, i.e., no trains run. Based on the definition of Cideal and Cworst-case, we can derive a
relative value P , indicating the performance and allowing us to rank any timetable that we found
by its nominal generalised travel time Cnominal, without any disruption.

Pnominal : 100− (
Cnominal − Cideal

Cworst-case − Cideal
) · 100 [%] (3)

Similarly, we can also rank the generalised travel time of a timetable when it is disrupted, given
by Cdisrupted:
Pdisrupted : 100− (

Cdisrupted − Cideal

Cworst-case − Cideal
) · 100 [%] (4)

Based on the definition of Pnominal in Eq. (3) and Pdisrupted in Eq. (4), it is apparent that for
the ideal performance Pideal = 100% holds, while Pworst-case= 0%. Note that we deliberately
distinguish between an ideal and nominal (optimal) C and P . This distinction allows us to
compare several different performances for solutions of the same problem instance, even when the
solutions differ in Pnominal. This might be especially relevant in cases, where due to constraints
or the use of heuristics, it is not possible to find a Pnominal with 100% performance.

Based on the SQ 1 and SQ 2, we visualise our aim. Therefore, we adapt the bathtub model of
Bešinović (2020), presented in Section 2, Fig. 3 using the proposed performance metric.

Figure 4: The performance metric visualised with the resilience bathtub curve.
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The adapted bathtub in Fig. 4 yields two curves, one before applying the approach (initial)
and one for the final result (eventual). As depicted, we aim to provide an approach that allows
the reduction of the impact of the critical disruption. As stated in Section 3.1.1, the critical
disruption is the one disruption among the set of possible disruptions causing the highest impact.
The impact is given by the absolute difference in Pnominal and Pdisrupted, similar to vulnerability.
We consider two approaches to reduce the impact. Firstly, we include available response measures
and resources to reduce the disruption’s impact optimally. Secondly, we aim to adapt the initial
timetable to a potentially less vulnerable one. Ideally, both response and adaptation complement
each other, such that resilience increases.

However, since we adapt the timetable, we might cause the nominal performance to deteriorate.
Therefore, we suggest to also consider the loss in Pnominal, which we define as the Cost of
Resilience, depicted in Fig. 4. Neglecting the cost of Cost of Resilience might lead to adverse
results. A trivial example for such a case is if the eventual Pnominal = Pworst-case, i.e., we cancel
all trains. Although such a step eliminates the vulnerability, it is apparent that the Cost of
Resilience exceeds any acceptable limit. Note that thanks to Pideal, we may also compare a set
of solutions.

3.1.4 Proposing the TSS to encompass TOC Requirements

As stated in Section 3.1.2, our proposition should be capable of capturing a wide range of (commer-
cial) requirements demanded by the TOC. Hence, we introduce the concept of Train Slot Sequences
(TSSs) which restricts the trains to run within predefined time windows. This concept is similar to
the Service Intention (SI) proposed by Caimi et al. (2011b) and Wust2019PeriodicInfrastructure
as a means to formalise commercial requirements during railway planning in practice. Another
similar concept is the Train Path Envelope (TPE) as used in Wang et al. (2020). Nevertheless,
whereas a TPE yields a conflict-free timetable as long as all trains run within their TPEs, the
same does not hold for a SI or a TSS. However, since both TPE and SI are also useful to specify
commercial requirements (e.g., latest departure), we assume that using TSS similarly is compatible
with the railway planning process.

Besides, using slots is also reasonable when considering the context. As we focus on strategic
and tactical planning horizons, there may be situations where we can only rely on a line plan as
input. However, a line plan generally does not yield any information on duration and time. Thus,
using slots allows us also to include the requirements of TOCs. Furthermore, in a more tactical
environment with shorter time horizons, the room for adjustments might be considerably smaller,
which we can again incorporate by adjusting the number of available Train Slot Sequences
(TSSs).

Although we will subsequently provide a formal definition of the TSS, Fig. 5 provides an overview
on the general concept.





      

Figure 5: The TSSs to couple the line plan, timetable and infrastructure.

B

A

C

Departure
at A

Passing
through B

Arrival
at C

Timetable with 
train slot sequences

Alternative train

Current train

TSS

Alternative TSS
Ti

m
e

Infrastructure with
track assignment

Route for alternative train

Route for current train

A CLine in one direction

As depicted in Fig. 5, a TSS limits a train to run within the slots which are given by a TSS.
However, the scheduled events can be adjusted as long as they remain within the sequence of
slots. Furthermore, a TSS does not limit the train to use a particular track if alternative routing
options are available. Thus, a TSS is more restrictive than a line since it restricts the train to
certain time windows. However, it still leaves room for adjusting the train run and the track
assignment.





      

3.2 Overall Approach

Next, we provide an overview of our approach. The integrated optimisation of railway timetables
is already challenging without consideration of resilience (Schiewe, 2020). Thus, we propose an
iterative approach to tackle optimisation, assessment and improvement of the timetable. The
iterative model is depicted in Fig. 6, and it consists of two main components, the Optimisation
Module (OM) and the Assessment Module (AM).

Figure 6: An overview on the Approach.

Assessment Module

Dual-Problem

Primal-Problem

Optimal Timetable

Best Response Critical
 Infrastructure

Critical Scenario

Optimisation Module

Master-Problem

Conflict

Sub-Problem

Potential Solution

Essentially, the OM yields Pideal, Pnominal and Pworst-case for a timetable, while the AM provides
Pdisrupted and information on the most critical disruption Hcritical. This information is then used
by the OM to adapt the timetable before demanding another assessment from the AM. In the
remainder, we now briefly outline each module.

Optimisation Module (OM) As given by its name, the OM allows to find an optimal timetable
under consideration of the perspectives given in Section 3.1.2. Given the broad scope addressed,
we propose a logical-Benders decomposition of the TTP task as suggested by Hooker and Ottosson
(2003). Using TSS, we can decompose the TTP into the tasks of finding an optimal solution
and checking for conflicts. Such separation attempts have already proven to be beneficial when
addressing the task of passenger routing and timetabling jointly in TTP (Polinder et al., 2021;
Szymula and Bešinović, 2020).

Assessment Module (AM) As the second module, the AM addresses the remaining tasks of
assessing the resilience with and without response actions. As stated in Section 2.3, we do not
rely on predefined disruption scenarios when identifying the most critical disruption Hcritical based
on Pdisrupted. Note that both, the OM and the AM are utilising TSS. Hence, we ensure consistency
when transferring a solution between the modules. With the same intention, potential responses
for addressing a Hcritical with disruption management are also defined with TSS.





      

Note that the outlined iterative process does not necessarily lead to a solution where Pdisrupted is
improved. For instance, there might be cases where disruption of Hcritical leads to a complete
separation of the network, and no response is available. However, we assume that even under such
circumstances, the information provided by the approach is valuable, as it reveals insights on the
weaknesses of the railway network, even when considering all responses. Thereby, we can guide
future mitigation measures. Furthermore, one can compare the effectiveness of different responses
or mitigation measures. Consequently, the iterative procedure provides decision support even
when the network’s resilience can not be improved immediately.

3.2.1 Fundamental Data Structures

Given that we established the basic structure of the approach, we now introduce two key networks.
To allow the logical-Benders decomposition, we utilise two networks, the Slot Sequence Network
(SSN) and the Event Activity Network (EAN). The SSN allows us to select the TSSs and to
route commodities when looking for an optimal solution. Complementary, the EAN enables us
to identify conflicts in a given solution. Hence, rather simplified, the SSN provides a view from
commercial aspects, whereas the EAN reflects technical perspectives. Next, we briefly introduce
each network before we successively show how we can connect both networks with the TSS.

The Slot Sequence Network (SSN ) is a directed graph composed of nodes N and links L. We
will use the SSN to select the TSSs and to route commodities when optimising the timetable.
For each node, we can specify a tn for which 0 ≤ tn < T holds. tn allows us to specify a fixed
event time, at which this node takes place. Furthermore, each link has a constant duration wl.
Based on the purpose, we can select subsets for both, N and L.

For N , N arr and N dep yield all arrival or departure nodes. Another subset of N is given N com

or N n-com, consisting of all commercial or non-commercial nodes. Thus, N com ∩N arr yields all
commercial arrival nodes. Similar to Wang et al. (2020), we consider arrivals and departures also
at non-commercial intermediate stations, even if the trains only pass.

Finally, N station yields all station nodes, i.e., change N change, access N entry and exit nodes N exit.
In our formulation, N station are crucial for both, the assignment of vehicles and passengers.

Naturally, we may also select subsets of L. While Ldwell covers all dwell links, Ltrip spans all trips.
Train links represent the union of dwells and trips Ldwell ∪ Ltrip = Ltrain. Similar to N station,
Lstation contains all station activities necessary for the assignment of vehicles and passengers,
such as access Laccess, waiting Lwait and egress links Legress.

Event Activity Network (EAN ) The EAN is a common approach to model TTPs in form of a
directed graph (Caimi et al., 2017). The set of events E contains all events to schedule, while
the activities A reflect all dependencies between E . Each e ∈ E is constrained to take place at
time te ∈ [tmin

e , tmax
e ], with tmin

e = 0 and tmax
e = T − dt unless specified differently. Similarly, the





      

duration of an activity wa is restricted by wa ∈ [wmin
a , wmax

a ]. As before, we can select subsets
for both, E and A.

For E , Earr and Edep yield all arrival or departure events, while Epass contains all passing events at
intermediate junctions. Another subset of E is given Ecom or En-com, consisting of all commercial
or non-commercial events. As trains do not stop at passing nodes, |Ecom∩Epass| = 0 holds. Again
following Wang et al. (2020), trains also arrive and depart and non-commercial intermediate
stations, although they do not necessarily stop. Lastly, Eanchor yields all anchor events, necessary
to restrict e ∈ Ecom ∩ Earr ∩ Edep to take place in the time windows imposed by the TSS.

Adwell cover all dwell activities, Atrip span all trips and train activities represent the union of
both Adwell ∪ Atrip = Atrain. As common in periodic TTPs, headway activities Aheadway ensure
that a timetable is free of conflicts. Finally, Aanchor impose the time windows given by the
TSSs.

In contrast to the SSN , the EAN does not contain any commercial requirements, as we use the
TSS for such purpose.

3.2.2 Defining the Train Slot Sequence (TSS)

In the following section, we define the TSS more rigorously, before we show how we convert lines
part of line plan into our input for the OM. Based on this definition, we may then decompose the
TTP in the OM with logical-Benders decomposition.

Our approach requires a line plan K as input. In contrast to common notation, our definition
of K contains directed lines κ ∈ K (Schmidt and Schöbel, 2015b). As implied by the name, a
directed line covers one directed segment from the start to the end of one line. As an example, if
a plan contains three lines in standard notation, said K consists of six directed lines in our case.
One directed line indexed by κ is defined as the tuple Ωκ containing the following elements:
Ωκ := (µcom

κ , µgen
κ , Πκ, fκ, Sκ) (5)

The parameters µcom
κ , µgen

κ and π ∈ Πκ represent the requirements submitted by the TOCs under
which they are willing to operate κ. Both µcom

κ , µgen
κ are integer multiples of dt and specify the

width of the slot sequences. µcom
κ defines the slot width at a commercial arrival or departure at

a station. µgen
κ defines additional slot width to add at any general arrival or departure (i.e., one

that is not of commercial purpose). Each π ∈ Πκ represents an absolute offset by which the slot
sequence can be shifted. Note that any π ∈ Πκ is also an integer multiple of dt and 0 ≤ π < T
holds.

Sκ defines the route of κ, as it contains a sequence of (n, e) pairs, which essentially define the
route of κ. Each of these pairs consists of either an e ∈ Edep and an n ∈ N dep or of an e ∈ Earr

and an n ∈ N arr. The sequence of the (n, e) pairs is given by the direction of κ, thus each (n, e)

pair either covers the arrival or departure at a station served or passed by κ.





      

We provide an illustration in Fig. 7 to visualise how the sequence of pairs (n, e) ∈ Sκ defines the
route of κ. As we have to add one pair for each station arrival or departure, we need four pairs
in Fig. 7. While the first one is a commercial departure, the two intermediate ones are a non
commercial arrival and departure respectively. The last pair is a commercial arrival.

Figure 7: An illustration of how Sκ captures the route of κ.
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These (n, e) pairs are a one to one mapping between some n ∈ N and some e ∈ E . Thus, each e

is at most member of one (n, e) pair, and vice versa for n. However, as there are some n ∈ N
and some e ∈ E which are not member of a (n, e) pair, we may not define one as an attribute of
the other.

Let t̂n,e be the (minimal) time required to reach any (n, e) ∈ Sκ from the first (n, e) on. We may
then calculate all slots constraining the time window for a (n, e) ∈ Sκ given by tmin

(n,e), t
max
(n,e) for all

(n, e) ∈ Sκ and a given π ∈ Πκ as follows:

tmin
(n,e), t

max
(n,e) :=

{
t̂n,e + π, t̂n,e + π + µcom

κ if n ∈ N com

t̂n,e + π − µgen
κ , t̂n,e + π + µcom

κ + µgen
κ else

(6)

As indicated by Eq. (6), a slot for a given event (n, e) ∈ Sκ has at least the width µκ and is
extended by 2 · µgen if n ̸∈ N com. Furthermore, we use π ∈ Πκ to shift the sequence of slots by π

such that |Πκ| slot sequences are available for a given κ.

We use Zκ,π to denote a slot sequence given by κ and π ∈ Πκ, while Yκ holds all Zκ,π defined by
κ. Summarising our definition, a slot z ∈ Zκ,π is defined as follows:
z := (nz, ez, tmin

z , tmax
z ) (7)

Each z ∈ Zκ,π associates a node nz and an event ez with the according time window [tmin
z , tmax

z ],
that is specified by κ and π of Zκ,π. Thus, we can use the zκ,π to restrict te ∈ [tmin

z , tmax
z ] and

define tn = tmax mod T . Let Nκ,π be the subset of all n ∈ N affected by Zκ,π and likewise Eκ,π
be the subset of e ∈ E . Besides, let Yavailable be the set of all Zκ,π given by κ and π ∈ Πκ for all
κ ∈ K. Essentially, Yavailable contains all available Zκ,π, of which we then have to select a subset
Yactive which we operate in our timetable.





      

3.2.3 Generating the SSN

Given that both, the TSS and SSN are defined, we subsequently show how we create SSN based
on a given K which defines Yavailable. Besides, we need two additional parameters for egress and
access time, µaccess and µegress. As indicated µaccess defines the minimal wl to transfer from an
n ∈ N station to an n ∈ N dep. Likewise, µegress applies to wl to transfer from an n ∈ N arr to
n ∈ N station.

The generation process covers two steps. Initially, we add all network components required for
each Zκ,π ∈ Yavailable. Eventually, we link these components with N station, such that the network
is suitable to route commodities.

Since the definition of a Zκ,π already defines timestamps tn for the associated n ∈ Nκ,π introducing
N train is straightforward. Furthermore, as Zκ,π also defines the order of n ∈ Nκ,π we can connect
the successive pairs ni, nj ∈ Nκ,π with the appropriate l ∈ Ltrain. Assuming that there is no
wl > T at this stage, calculating the duration of wl for an l ∈ Ltrain, is as follows;
wl = (tj − ti) mod T ∀ ni, nj ∈ N κ,π (8)

which is common for PESP and ensures that the SSN adheres to the requirements of periodic
planning (Caimi et al., 2017). At this stage, the SSN is incomplete and consists of weakly
connected components. Each component stems from a Zκ,π.

Next, we add the N station for each station individually. To accurately reflect changing between
trains, we add T /dt many n per station. Besides, we assign tn such that one n reflects one
t ∈ 0, dt, ..., (T − dt). Subsequently, we link these n with an l ∈ Lwait for each pair where (tj − ti)

mod T = dt. We then proceed to repeat this step for each station.

Next, we add Legress. We add one l ∈ Legress for each n ∈ N com ∩N arr, such that it originates at
n and connects it to an n ∈ N change such that wl according to Eq. (8) equals µegress.

Adding Laccess requires an additional consideration. Since a z ∈ Zκ,π ties a tn to tmax
(n,e), we always

assume that the time window is fully utilised, even if the te of the corresponding e from the
constrained (n, e) pair takes place at an earlier time. Hence, any wl for an l ∈ Laccess connecting
an n ∈ N κ,π is given by µaccess +µcomm

κ , as we otherwise violate the time windows of Zκ,π. Apart
from that, adding Laccess is similar to adding Legress, only difference being that an l ∈ Legress

originates at an n ∈ N change and connects it with an n ∈ N com ∩N dep.

Lastly, we introduce N entry and N exit to the SSN . We add one n ∈ N entry for each o ∈ O and
one N exit for each d ∈ D respectively. Note N exit∪N exit are auxiliary n acting as source and sink
nodes. Hence, we omit to assign a tn for N exit ∪N exit. Eventually, we connect each n ∈ N entry

with an l ∈ Laccess to all n ∈ N dep ∩N com, with wl = µaccess at this station. Similarly, we link
each n ∈ N exit with an l ∈ Legress originating at the n ∈ N arr ∩N com of this station. Naturally,
wl = µegress holds for these links.





      

To support our explanation above, we present an illustration of an SSN in Fig. 8. In the example,
Yactive contains three Zκ,π. Furthermore, there is one n ∈ N entry at A, which is connected to
all three departure nodes. Similarly, there is one n ∈ N exit at C, connected to all commercial
arrivals. At all three stations, we see the n ∈ N change that are connected to a circle per station.
Worth mentioning is that since the κ passes B, there is no connection from or to the n ∈ N change

at B. l ∈ Laccess at A are yellow, while all l ∈ Legress are coloured in dark blue at C.

Figure 8: Example SSN where based on the example line in Fig. 5.
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As stated in Section 2.3 we aim to include both, the routing of passengers and vehicles in the
timetable optimisation process. Likely, µaccess and µegress depend on the commodity. In this case,
we propose to generate two SSN , one for the purpose of routing vehicles, denoted as SSNvehicle

and one for routing passengers SSNpax. Furthermore, we do not include N entry and N exit in
SSNvehicle, as we demand all vehicles to circulate.

3.2.4 Generating the EAN

As mentioned in Section 3.2.1, the EAN is common in periodic TTPs. However, since we also
include the task of assigning tracks in TTP, the EAN which we generate slightly deviates from
usual notation. Besides, we add a special set of Eanchor ⊆ E and Aanchor ⊆ A to include
the restrictions imposed by Yactive. Similar to Fuchs et al. (2021), we create the EAN on a
mesoscopic level of detail. This level is an aggregated representation of the microscopic level of
detail, providing a more accurate representation than the common macroscopic level used for
PESP (Caimi et al., 2017; de Fabris et al., 2014). As we are also considering the task of track
assignment, we opt for the more detailed level of detail, which is still suitable for the strategic
and tactical planning context (de Fabris et al., 2014).

To create the EAN , we always require an Yactive, hence all trains in the EAN must be operated.
To construct the EAN , we extract the accessible mesoscopic infrastructure defined by each
Zκ,π ∈ Yactive. As Zκ,π defines Etrain in a successive sequence, the sequence of passed stations
is given. Hence, we use the same procedure as Fuchs et al. (2021) for extracting the accessible
mesoscopic infrastructure per Zκ,π. We convert the tracks to Atrain by adding one a ∈ Atrip for





      

each section track and a a ∈ Adwell at each station exit. Each a ∈ Adwell originates at an e ∈ Earr

and leads to an Edep. On all remaining instances where the infrastructure indicates two or more
connecting a ∈ Atrain, we add an e ∈ Epassing. At the end of this step, the resulting EAN consists
of |Yactive| weakly connected components. Each component is a Directed Acyclic Graph (DAG).
We provide an illustration for one such component in Fig. 9 at the EAN train stage.

Next, as Fuchs et al. (2021) proposed, we cluster all e ∈ Earr and e ∈ Edep events at each station.
This step is also illustrated in Fig. 9 at the second stage. On the one hand, this step allows us to
remove redundant e ∈ E . On the other hand, it enables us to introduce the restrictions imposed
by Zκ,π ∈ Yactive as we now show.

To ensure that the resulting timetable does not violate the [tmin
z , tmax

z ] imposed by z ∈ Zκ,π on
the e ∈ Earr ∪ Edep, we could enforce te ∈ [tmin

z , tmax
z ]. However, in a case where tmin

z mod T is
bigger than tmax

z mod T , the resulting time window would be disjoint. Thus, we opt for an
alternative approach, where introduce an e ∈ Eanchor per Zκ,π ∈ Yactive with te = tmin

e = tmax
e = π

for the e ∈ Eanchor.

Next we connect each of these e ∈ Eanchor with all e ∈ Earr and e ∈ Edep that it should constrain
according to the z ∈ Zκ,π. To add these constraining activities, we use a ∈ Aanchor. As a
consequence, each cluster of e ∈ Earr and e ∈ Edep is connected to the e ∈ Eanchor.

Figure 9: The first three steps of the EAN creation for one Zκ,π.
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Then, we constrain the duration wa ∈ [wmin
a , wmax

a ] for all these added a ∈ Aanchor. As each
a ∈ Aanchor represents a z ∈ Zκ,π, the time window is given by [tmin

z , tmax
z ] of the corresponding z.

Thus, after introducing Eanchor and Aanchor to the EAN , any solution respects all Zκ,π ∈ Yactive.





      

Fig. 9 provides visualisation of the steps so far.

Finally, we include all Aheadway the timetable is free from collisions. Given our TTP is capable of
assigning tracks, we introduce two types of a ∈ Aheadway, node-occupation and link-occupation
Aheadway. While node-occupation Aheadway ensure that two trains do not occupy the same
infrastructure node without a safe separation interval, link-occupation Aheadway ensure that
trains are separated to avoid collision on a shared section. By explicitly distinguishing between
node-occupation and link-occupation, we ensure that safety requirements are always met, without
wasting capacity in the TTP. Fig. 10 provides an illustration for both, node-occupation and
link-occupation Aheadway. To calculate [wmin

a , wmax
a ] for any wa corresponding to an a ∈ Aheadway,

we use the methods proposed by Peeters (2003).

Figure 10: An excerpt of an EAN for two Zκ,π with headways.
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Note that there are no A that explicitly deal with commercial requirements (|Acom| = 0), since
any valid assignment of an Yactive already enforces any commercial requirements.





      

3.3 Introducing the Optimisation Module (OM)

Given the advances in research, a wide range of solution techniques for periodic timetables are
available (Caimi et al., 2017). However, the task itself remains challenging, especially when more
aspects are integrated (Schiewe, 2020). Hence, we propose to decompose the TTP with logical
Benders decomposition introduced by Hooker and Ottosson (2003). This decomposition scheme
has proven to be appropriate for scheduling problems (Hooker, 2007).

We already introduced the concept of TSSs. Furthermore, all available TSSs are given by Yavailable.
Thus, we now propose to find and optimal Yactive ⊆ Yavailable with the Slot Sequence Selection
Problem (SSSP). To cope with the complexity, we use logical Benders decomposition to decompose
Slot Sequence Selection Problem (SSSP) into two hierarchically connected problems, the Master
Slot Sequence Selection Problem (M-SSSP) and the Sub Slot Sequence Selection Problem (S-SSSP).
While the master problem, Master Slot Sequence Selection Problem (M-SSSP) uses the Slot
Sequence Network (SSN) for finding the optimal combination of Zκ,π ∈ Yactive ⊆ Yavailable. For
a given Yactive the S-SSSP utilises the EAN to find a timetable for a given Yactive, such that all
trains can run within their Zκ,π without causing a conflict. If the S-SSSP is infeasible for Yactive,
it determines the conflicting Zκ,π given by Yconflict ⊆ Yactive, hence the current Yactive and any
other possible Yactive containing Yconflict are removed in the M-SSSP.

3.3.1 The Master Slot Sequence Selection Problem (M-SSSP)

To formulate the M-SSSP, we define the decision variables podl , and grl . Each of these variables
represents a flow that is routed on l ∈ L of the respective network. While all podl are routed via
the SSNpax, the SSNvehicle provides the network to route the flow of vehicles grl . Eventually, we
introduce the binary decision variable δκ,π, which indicates if the corresponding Zκ,π is selected.
Note that we use deg(n)+ to obtain all outgoing l ∈ L for a given n, while deg(n)− yields all
incoming l ∈ L.

Furthermore, we must ensure that the commodities are routed according to the od-relation, so
we use a copy of the SSNpax,od per od ∈ OD. The same applies for each vehicle r; hence we also
use a copy of SSNvehicle,r for each r ∈ R.





      

min
∑

od∈OD

∑
l∈Lod

codl · wl · podl (9a)

sb. to
∑

l∈deg−(n)

podl −
∑

l∈deg+(n)

podl


= γod if n ∈ N entry

= −γod if n ∈ N exit

= 0 else

, ∀n ∈ Npax,od,∀od ∈ OD, (9b)

∑
l∈deg−(n)

grl −
∑

l∈deg+(n)

grl = 0 ∀n ∈ Nr, ∀r ∈ R, (9c)

∑
od∈OD

podl ≤ grl · capacity(r), ∀l ∈ Lκ,π, ∀π ∈ Πκ, ∀κ ∈ K, ∀r ∈ R, (9d)∑
l∈Lr

grl · wl = yr · T, ∀r ∈ R, (9e)

grl = δκ,π, ∀l ∈ Lκ,π, ∀π ∈ Πκ ∀κ ∈ K, (9f)∑
π∈Πκ

δκ,π

= fκif κ is mandatory

≤ fκ else
∀κ ∈ K, (9g)

∑
(κ,π)∈Yconflict

δκ,π ≤ |Yconflict| − 1, (9h)

δκ,π ∈ {0, 1}, ∀π ∈ Πκ, ∀κ ∈ K, , (9i)

podl ∈ R+, ∀l ∈ Lpax,od, ∀od ∈ OD, (9j)

grl ∈ Z+, ∀l ∈ Lr,vehicle, ∀r ∈ R, (9k)

yr ∈ {0, 1, ...,max(r)}, ∀r ∈ R. (9l)

The objective in Eq. (9a) minimizes the generalised travel time as defined by C in Section 3.1.3.
Hence, the objective of an optimal solutions corresponds to Cnominal, based on generalised travel
time in Eq. (1). Furthermore, flow conservation in each SSNpax,od for od ∈ OD is ensured by
Eq. (9b). Likewise, the flow balance for vehicles in each SSNvehicle,r for each r ∈ R is enforced
by Eq. (9c). Joining vehicles and passengers, Eq. (9d) ensures that the accumulated passenger
flow over all od ∈ OD per l ∈ Ltrain does not exceed the capacity of the grl operating on l.

Eq. (9e) limits the number of available vehicles and requires the total number of used vehicles to
be an integral multiple of the period duration. Besides, Eq. (9f) ensures that a vehicle grl may
only be routed via an l of a TSS if the corresponding δκ,π of the TSS is chosen to be active.

As all variables δκ,π belong to a directed line κ, Eq. (9g) assures that the number of active δκ,π

for all π ∈ Πκ does not exceed the frequency fκ. Furthermore, if κ must be operated, we enforce
that the number of active δκ,π equals fκ. Note that similar to Polinder et al. (2021), we do not
enforce regularity constraints if fκ > 1 and instead leave the decision on the separation between
the repetitions to the M-SSSP.

Eq. (9h) is the constraint that we use to couple the M-SSSP with the S-SSSP in the Logic-based
Benders decomposition. It allows for banning any combination of δκ,π for which the S-SSSP
could not find a solution due to conflicts.





      

3.3.2 Adressing a Critical Disruption in the M-SSSP

Following the establishment of the M-SSSP we propose an approach to increase the resilience of a
given M-SSSP solution against a known critical disruption. Note that we explain how we obtain
the critical disruption throughout the two subsequent sections. For the adaption, we require
the critical disruption given by Hcritical and the current solution given by Yactive. We aim to
provide redundant connections by pushing some of the pod ∈ OD on redundant, less optimal
connections. Then, if we resolve the M-SSSP, these connections benefit from a higher demand.
As a consequence, they likely offer alternative, high-quality connections. Since these connections
are redundant in normal circumstances, we refer to them as redundant. As demanding redundant
connections may lead to a worse Cnominal and increase the Cost of Resilience (Section 3.1.3), we
propose to apply this adaptation measure only for critical disruptions, i.e. the disruptions with
most impact on performance P .

Let ODcritical be the set of all od affected by Hcritical. Furthermore, let l ∈ LH,od be all the links
l ∈ Ltrain for one od affected by Hcritical. Then, we may identify all podl currently affected by
Hcritical. However, before we can impose a limit for each od, we have to capture the share of podl
that can be rerouted, since only parts of the passenger flow might be capable of reaching their
destination via a redundant connection.

To obtain the share of γod that is available, we restrict the M-SSSP to the current Yactive.
Subsequently, we iterate over all od ∈ ODcritical by setting the corresponding objective as defined
by Eq. (10) in the M-SSSP.
pod,min
H = min

∑
l∈LH

podl ∀od ∈ ODcritical (10)

Consequently, we obtain the minimal flow required to still ensure feasibility of the M-SSSP for each
od ∈ ODcritical. Let pod,min

H be the minimal cumulated flow, while pod,max
H in Eq. (11) describes

the current cumulated flow of pod for an od via Hcritical.
pod,max
H =

∑
l∈LH

podl ∀od ∈ ODcritical (11)

Based on a user defined parameter λ ∈ (0, 1] we force a share of passengers to choose a redundant
route by adding Eq. (12) to the M-SSSP.∑
l∈LH

podl ≤ (pod,max
H − pod,min

H ) · λ ∀od ∈ ODcritical (12)

As mentioned before, we aim to add these constraints such that the vulnerability of the next
Yactive against the current Hcritical is reduced. Hence, we proceed to integrate the proposition in
an iterative approach, allowing us to iteratively improve a given Yactive.





      

3.3.3 The Sub Slot Sequence Selection Problem (S-SSSP)

As stated in Section 3.3, it is the task S-SSSP to verify if for a given Yactive, a feasible timetable
exists. While the S-SSSP can exploit the routing alternatives by assigning tracks, any timetable
has to respect the time windows induced by the z ∈ Zκ,π for all Zκ,π ∈ Yactive.

Given a Yactive, we use the procedure outlined in Section 3.2.4 to generate the input EAN . Next,
we create the Train Flow Network (TFN), which is required to assign tracks. The TFN consists
of vertices v ∈ V and segments u ∈ U . To create the TFN , we can use the non-clustered EAN

as input. Initially, we prune this copy of the EAN such that it solely consists of e ∈ Etrain

and a ∈ Atrain. Let EAN∗ be one such pruned copy. We then convert EAN∗ to the TFN by
mapping each e∗ ∈ E∗ to one v ∈ V. Similarly, we can map a∗ ∈ A∗ to u ∈ U .

Next, we define v ∈ {0, 1} and u ∈ {0, 1}, such that we can use the TFN as a directed binary
flow network. In the TFN , a flow corresponds to a train route. Furthermore, TFN consists
of |Yactive| many weakly connected components. If we induce one binary flow from the sources
v ∈ Vsource to sinks v ∈ Vsink in each of these components, we obtain a route for each train in the
corresponding EAN . Subsequently, the TFN allows us to assign tracks, while we can use the
EAN to assign te∀e ∈ E . Figure 11 provides an exemplary EAN and TFN for a case with to
trains to route.

Figure 11: Example EAN and TFN for two Zκ,π ∈ Yactive.
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To allow joint routing and timetabling in TTP, Fuchs et al. (2021) introduce the TTP with selectable
and non- selectable activities. However, in our formulation, all a ∈ A are selectable. Similar to
Fuchs et al. (2021), we define selectable as that wa ∈ [wmin

a , wmax
a ] must hold, when a is selected.

Otherwise wa ∈ R+ implies that the a is inactive. Whether an a is selected depends on the
routes chosen in TFN . For example, an a ∈ Aheadway is superfluous, if the two separated trains
use different infrastructure. Since a collision is impossible, a might actually over-constrain the
S-SSSP and lead to a wrong result. Hence, we define that a selectable a is active when all required
vertices v ∈ Va and segments u ∈ Ua are used by trains routed through TFN .





      

To define the Va and Ua for each a ∈ A, we have to consider its purpose. If a ∈ Atrain, the
activity has to selected if the corresponding train uses it, thus Ua holds the corresponding u while
Va = {}. For an a ∈ Aheadway that is of type node-occupation, Va contains the two corresponding
vertices in the TFN , that have to be separated safely if both are used, while Ua = {}. Contrarily,
if an a ∈ Aheadway is of type link-occupation, Ua contains both u that have to be separated safely,
while Ua = {}. For any other a ∈ A, Va = Ua = {}

Recall that wa denotes the duration of a selectable a ∈ A and wa ∈ [wmin
a , wmax

a ] must hold if
the activity is selected. Eq. (13) and Eq. (14) show how we model this requirement.
wa ≥ wmin

a − (|Va| −
∑
v∈Va

v + |Ua| −
∑
u∈Ua

u) · wmin
a (13)

wa ≤ wmax
a + (|Va| −

∑
v∈Va

v + |Ua| −
∑

wa∈Ua

u) · (T − wmax
a − dt) (14)

Eq. (13) restricts the activity duration wa to the lower bound wmin
a , when all related vertices Va

and segments Ua are used by routed trains. The lower bound is relaxed if at least one v or u is
unused (= 0). The structure of Eq. (14) is similar while it constrains the upper bound. Note,
that for an activity which has to be valid at all time (e.g., an a ∈ Aanchor), |Va| = 0 and |Ua| = 0

holds, implying that wmin
a and wmax

a must be respected in any case. Hence, there is no need to
explicitly distinguish between selectable and non-selectable activities, as Fuchs et al. (2021) do.

By using the decision variables t′e to model te, ka to account for periodicity, and v, u to assign
tracks, we may formulate the S-SSSP with routing now in (15):

min
∑

a∈Aanchor

wa (15a)

s. t. wa ≥ wmin
a − (|Va| −

∑
v∈Va

v + |Ua| −
∑
u∈Ua

u) · wmin
a , ∀a ∈ A, (15b)

wa ≤ wmax
a + (|Va| −

∑
v∈Va

v + |Ua| −
∑

wa∈Ua

u)

· (T − wmax
a − dt), ∀a ∈ A, (15c)

wa = (t′j − t′i) · dt+ ki,j · T , ∀(i, j) ∈ A, (15d)∑
ui∈deg+(v)

ui =
∑

uj∈deg−(v)

uj = v, ∀v ∈ V, (15e)

∑
v∈Vsource∩Vκ,π

v = 1, ∀(κ, π) ∈ Yactive, (15f)

t′e ∈ {0, 1, .., (T − dt)/dt}, ∀e ∈ E , (15g)

v ∈ {0, 1}, ∀v ∈ V, (15h)

a ∈ {0, 1}, ∀u ∈ U , (15i)

ka ∈ Z, ∀a ∈ A (15j)





      

Although the S-SSSP is only required to determine feasibility, we define the objective in Eq. (15a)
to minimise the total duration of all activities that connect the anchor events with the clustered
arrival and departure events. Thus, we aim to guide the solver when searching for a solution.
Eq. (15b) and Eq. (15c) ensure that if an activity is selected, the minimal and maximal duration
is not exceeded (wa ∈ [wmin

a , wmax
a ]). Eq. (15d) is a typical PESP-constraint, which links the

duration of activity with the two associated events and corrects the effect of periodicity. Even
though, wa is shown here as here as a variable, we can substitute any occurence of wa with
Eq. (15d).

Eq. (15e) ensures flow conservation in the TFN components and connects the flow passing
through v with the incoming and outgoing flow u. Eq. (15f) demands that one route per
Zκ,π ∈ Yactive is active since the flow for each set of vertices belonging to the same Vsource has
to equal one. Finally, a scaled timestamp for an e ∈ E given by t′e is limited to the scaled
period duration (Eq. (15g)). Note that we have to scale t′e such that te = dt · t′e, in order for
te ∈ {0, dt, ..., (T − dt)}.

Since TFN is a binary flow network, all flow variables are required to be binary (Eq. (15i) and
Eq. (15h)). Finally, ka is restricted to be integer Eq. (15j). Note that one can always adjust
wa such that ka ∈ {0, 1}, as shown by Peeters (2003). However, since we do not use the MIP
formulation of the S-SSSP, we omit strengthening the bounds on ka.

3.3.4 Encoding the S-SSSP with Boolean Satisfiability Problem (SAT)

We do not solve the MIP formulation of the S-SSSP but instead encode it in SAT. We opt for
SAT encoding because of three reasons. Firstly, in periodic TTP, SAT is known to outperform
the MIP formulation when determining feasibility (Kümmling et al., 2015), which is the main
task of the S-SSSP. Secondly, another task of the S-SSSP is to provide the master with the cause
of infeasibility. As some SAT-solvers provide unsatisfiable cores, we may use this information
to extract information on the conflicting Zκ,π ∈ Yconflict ⊆ Yactive. Finally, as we also want
include the task of train routing when solving the S-SSSP, we follow Fuchs et al. (2021), which
demonstrate that encoding as SAT generally outperforms equivalent MIP-formulations.

As a result of the encoding, we obtain an equivalent formula in a Conjunctive Normal Form (CNF),
where clauses represent a disjunction of literals, with q denoting a literal. A CNF is satisfactory
if at least one valid assignment for all q ∈ Q exists. We refer to Biere et al. (2009) for further
information on SAT. In the following, we proceed to encode the S-SSSP. Note that the presented
encoding is based on the encoding by Fuchs et al. (2021).

To begin with, we encode the TFN as a binary flow problem. Given that each component in the
TFN represents the routing options for one train path, we can map the vertices V and edges U
of the TFN directly to SAT literals q ∈ Q by a one-to-one mapping. Using Eq. (16) as a helper,





      

we encode the TFN by applying 17 to each v ∈ V.
encode-at-most-one(Qss) :=

∧
∀qi,qj∈Qss, i<j

¬qi ∨ ¬qj (16)

encode-TFN(v) := ( ¬qv ∧
∨

u∈deg+(v)

qu ) ∧ ( ¬qv ∧
∨

u∈deg−(v)

qu )

∧ encode-at-most-one(deg+(v))

∧ encode-at-most-one(deg−(v))

(17)

Following the encoding of the TFN , we proceed to encode the EAN . At first, we map one literal
to each te ∈ {0, dt, ...T } for all e ∈ E . Subsequently, we order-encode all events E as proposed by
Großmann (2011) with (18).

encode-event(e) := ( ¬qe,−dt ∧ qe,T −dt ) ∧
∧

i∈{0,dt,..,T −dt}

( ¬qe,i−dt ∨ qe,i ) (18)

In a successive step, we encode a ∈ A. As we are using selectable A, the limitations on the
duration wa only have to be respected when the according vertices Va and segments Ua in the
TFN are used by the routed trains. Thus, we adapt the encode-rectangle function of Großmann
(2011) towards the encode-conditional-rectangle (19).

encode-conditional-rectangle({i1, i2} × {j1, j2}) :=¬qi,i2 ∨ qi,i1 ∨ ¬qj,j2 ∨ qj,j1

∨
∨
v∈Va

¬qv ∨
∨

u∈Ua

¬qu (19)

We demand one path for each TFN component as the last encoding step. Hence, we add
one assumption literal per Zκ,π ∈ Yactive, denoted by qκ,π. We may now link qκ,π with the
corresponding source vertices v ∈ Vsource∩Vκ,π with Eq. (20). Hereby, we encode the requirement
to select a paths for trains in the TFN .

encode-path-activation(κ, π), Qsource) := ¬qκ,π ∨
∨

v ∈ (Usource∩Uκ,π)

qv (20)

Thereby, we can demand the qκ,π to be true as an assumption literal to enforce the selection of
path in the TFN component. Furthermore, in the case of infeasibility, all qκ,π that are part of
the unsatisfiable core are the conflicting components of the TFN . Extracting Yconflict from the
unsatisfiable core is thus straighforward. Consequently, we can use the SAT approach to find a
solution for the S-SSSP or to extract Yconflict ⊆ Yactive.

3.3.5 Connecting the M-SSSP and S-SSSP in the Optimisation Module (OM)

We expect the M-SSSP to yield many solution candidates Y∗
active that have to be assessed by the

S-SSSP. On the other hand, it is possible to use the S-SSSP to find a feasible solution, which





      

we can transform towards Y−
active as a potential solution to the M-SSSP. Thus, we use a callback,

such that the M-SSSP can interact with the S-SSSP when being solved.

Using the callback yields several advantages. At first, the MIP-solver can assess solutions during
the branch and bound tree exploration. Consequently, if the S-SSSP finds the current solution
infeasible, we add a constraint as given by Eq. (9h) to the M-SSSP to remove this conflicting
Y∗
active. Contrarily, if we solved the M-SSSP to optimality, we would have to re-start the solver

when the solution is not feasible in the S-SSSP.

Our callback assesses complete integral Y∗
active. If for any κ which is mandatory, the count

of active Zκ,π is less than fκ, the callback forces to S-SSSP to find at least one Yactive, where
sufficient Zκ,π are active for all κ ∈ K. This has two advantages. Firstly, we are sure that even
for a partially relaxed solution of the M-SSSP, at least one valid Yactive for the S-SSSP exists.
Secondly, we can use the S-SSSP to generate a potential solution candidate Y−

active for the M-SSSP.
However, randomly obtaining and injecting Y−

active is likely not beneficial. Hence, we limit the
possibility of generating Y−

active to warm-start the M-SSSP. Note that such a Y−
active does not

necessarily lead to an improved incumbent solution in the M-SSSP.

3.3.6 A Fix-and-Dive-Heuristic for the Slot Sequence Selection Problem (SSSP)

Heuristics that optimise a partition of an instance while relaxing or fixing the remainder have
been applied successfully in strategic TTP (Herrigel et al., 2018; Polinder, 2020) and disruption
management (Zhu and Goverde, 2020b). Consequently, we propose a similar approach to create
high-quality solutions from scratch. In essence we relax a selection of variables of the M-SSSP.
Then we iteratively fix some of the variables and dive down the branch-and-bound tree. Our
approach relaxes variables from δκ,π ∈ {0, 1} to δκ,π ∈ [0, 1] and groups them according to the
corresponding κ. Let ∆κ be one such a group, containing all δκ,π for one κ. As a feature, the
heuristic allows sorting the sequence of ∆κ by user preference.

As stated previously, we relax all δκ,π that are part of any κ that should be relaxed. We then
proceed to demand all δκ,π ∈ {0, 1} ∀ δκ,π ∈ ∆κ for the first κ and solve the partially relaxed
M-SSSP to optimality or until a time limit is reached. Similar to Zhu and Goverde (2020b) there
is one exception. If no feasible solution can be found within the time limit, we allow to violate
the time limit until a feasible solution has been found. Given a solution, we then fix all ∆κ

that are binary to their current value and proceed to the next κ. After iterating through all the
groups of δκ,π, we obtain an Yinitial for the M-SSSP. Note that due to the callback procedure in
Section 3.3.5, we are assured that at least one feasible solution for the S-SSSP exists, even when
all δκ,π∀Z ∈ Yavailable in the M-SSSP are relaxed to non-binary values.

3.3.7 Shrinking the size of the M-SSSP

The routing of passengers in the M-SSSP is arc-based. Since this formulation requires |OD|
many copies of the SSNpax, the problem size is likely to increase quickly. However, opting for a





      

path based formulation similar to Szymula and Bešinović (2020) is not viable since we solve the
SSSP from scratch, rather than optimising an existing timetable. Thus, we keep the arc-based
formulation but propose three measures to shrink the instance size. All steps aim to reduce the
number SSNpax elements in the formulation but none affects the optimality of the SSSP.

In the first step, we remove all n ∈ N train ∩N n-com, since these nodes are irrelevant to route the
passengers. Naturally, we have to add one l ∈ Ltrain to bridge the gap that results from removing
the n. Let li be the incoming link and lj be the outgoing of a removed n. We then have to add
one l with wl = wi + wj , which connects the predecessor n with the succeeding n.

In the next step, we utilise a frequent assumption in (strategic) passenger-oriented planning,
which states that the maximal detour for an od can be limited (Schmidt and Schöbel, 2015a).
This assumption is based on the observation that all cut-off routing alternatives would lead to
unacceptable detours for this od-relation. In our case, we may apply this assumption without
loss of optimality. This is due to our limit on the maximal detour in the SSSP, codmax per od given
in Eq. (2). Thus, cutting-off any worse detours does not affect the SSSP. Consequently, we prune
each SSNpax,od. We remove all nodes n ∈ SSNpax,od where the generalised travel time of the
shortest path from o to d via n exceeds codmax.

In the second step, we use the observation that although two od-relations do not share o and d,
the two copies of SSNpax might be highly similar, especially if the respective o and d are located
closely. Hence we introduce a second reduction step based on the suggestion of Bull et al. (2019)
to bundle the flow commodities of a line plan by origin, rather than by relation.

To expand on Bull et al. (2019), we implement multiple bundling procedures, such that we
can use the one which produces the smallest SSSP instance: Bundling by Origin follows the
suggestion of Bull et al. (2019), such that all outgoing pod for one o use the same SSNpax,o.
Bundling by Destination is the inverse strategy of Bundling by Origin by Bull et al. (2019),
such that all incoming pod for one d use the same SSNpax,d. Heuristic Bundling uses a MIP
heuristic to find the best bundling. It uses the number of required SSNpax links as objective and
selects a subset of possible bundling such that all od ∈ OD are served. However, as per origin or
destination bundling ODbundle,

(|ODbundle|
k

)
possible bundling configurations exist, O(|ODbundle|!)

of variables would be required. However, we limit each bundle to a maximum 1000 combinations.
Thus, the subsequent MIP yields only heuristic results.

Eventually we want to emphasise that the outlined procedures to reduce the size of the SSSP
do not lead to any loss of optimality. Firstly, removing n ∈ N train ∪Nn-com from the SSNpax,od

does not remove any routing options and thus does not affect optimality. Secondly, pruning the
SSNpax,od with codmax does only remove paths, which would lead to a C > Cworst-case as the length
of any removed path exceeds codmax. Furthermore, bundling od by o or d does not affect optimality
as well (Bull et al., 2019).





      

3.4 Introducing the Assessment Module (AM)

In contrary to the OM, the AM focuses on assessing an existing Yactive, rather than finding one.
Furthermore, the AM aims to find Hcritical from all possible disruptions H, even when all responses
are optimally applied.

Currently, models like the RNVM proposed by Szymula and Bešinović (2020) already allow finding
Hcritical. Furthermore, approaches to manage known disruptions exist as well (Borecka and
Bešinović, 2021; Zhu and Goverde, 2017). However, none of the approaches jointly considers the
task of identifying Hcritical and applying responses. Hence, we propose two adaptations of the
SSSP, the Primal Slot Sequence Selection Problem (Primal-SSSP) and the Dual Slot Sequence
Selection Problem (Dual-SSSP). While the former model is capable of assessing and responding
to the impact of a given disruption, the latter identifies Hcritical.

Subsequently, we combine the two models in an algorithm, capable of identifying the critical
disruption even when the best of the available responses actions are taken. Furthermore, by
relying on modifications of the SSSP consistency between the AM and OM is ensured, which is
key for an accurate assessment. On the contrary, using a different model could lead to loss of
information.

3.4.1 Modifiyng the SSSP towards Primal Slot Sequence Selection Problem (Primal-SSSP)

Initially, we adapt the SSSP to find the best responses as reaction to a given disruption containing
one or more blocked h ∈ Hdisrupted. Recall, that we start from an existing Yactive, as a starting
solution.

To adapt the SSSP towards Primal-SSSP for such an analysis, it is crucial to add a bypass
l ∈ Lbypass from each o to d given by OD, as some od ∈ OD may have no more routes available.
Note that we add l ∈ Lbypass in each SSNpax,od. For the bypasses, we set the wl = 1 while
cl = codmax reflects the penalty. As stated in Section 3.1.3 the penalty codmax contains the generalised
travel time of the longest path permissible for this od. Thus, completely cutting off an od-relation
increases C and cutting off all od ∈ OD increases the objective to Cworst-case. Hence, C is limited
to the range [Cideal, Cworst-case], while the Primal-SSSP is always feasible.

Next, we enhance Primal-SSSP, allowing to (partially) block Zκ,π affected by Hdisrupted. Let
Lh,r be the set of all l ∈ Ltrain

r passing h. Then, introducing a blocked infrastructure section
h ∈ Hdisrupted, requires one modification and one additional constraint in the M-SSSP:∑
l∈Lh,r

grl ≤ |Lh,r| · xh, ∀h ∈ H,∀r ∈ R (21a)

grl ≤ δκ,π, ∀l ∈ Lκ,π, ∀π ∈ Πκ, ∀κ ∈ K, (21b)

xh ∈ {0, 1} ∀h ∈ H. (21c)





      

Eq. (21a) is an additional set of constraints which allows to block infrastructure sections h ∈ H.
If h is blocked, we set the decision variable xh = 0 and consequently, no more vehicles grl may
use the affected l ∈ Lh. Contrarily, xh = 1 does not add any restriction. Secondly, Eq. (21b)
replaces Eq. (9f) from the original M-SSSP formulation. Given this modification, it is possible
to operate only parts or to ignore an active δκ,π, which is crucial for implementing disruption
management measures. Finally, we can introduce several response possibilities which influence
the margin of adjustments that the Primal-SSSP has access to. The following options can be
included/excluded accordingly:

Short turning means to partially cancel a TSS by no longer passing over the disrupted section
but still serving the TSS’s remaining part(s). We can include the option of short-turning by
adding l ∈ Laccess and l ∈ Legress links on the SSNr,vehicle at suitable intermediate stations, such
that short turning a train there is possible.

Cancellation indicates that a κ is no longer operated. This measure is essentially similar to short
turning at the first and last n ∈ N station. Subsequently, any podl travelling on any a cancelled grl
has to take an alternative route.

Alternative modes such as buses, provide alternative connections, bridging the gap inflicted
by the disruption. However, the limit of available vehicles max(r) limits the additional service
provided. We can introduce such services by the SSN from an expanded line plan K ∪ Kbus,
where Kbus holds all alternative κ that can be deployed during a disruption. Consequently, Ybus

holds all Zκ,π that we can derive from Kbus. Given that we focus on railways, we do not check
for conflicts on road traffic. Hence, any Yactive ⊆ Ybus is feasible in the M-SSSP.

All these interventions are common means to cope with disruption, thus including them allows us
to obtain an accurate assessment. Furthermore, when we limit the set of Yavailable = Yactive∪Ybus,
we skip the step of assessing the resulting Yresponse ⊆ Yavailable, in the S-SSSP. This decision is
based on the assumption, that removing trains and adding buses does not lead to a conflict.

Subsequently, we introduce further responses in form of disruption management measures. Since
these lead to more drastic adaptions, it is required to assess any solution with the S-SSSP as well.
Thus, when we prepare the EAN for the S-SSSP we also have to remove all Atrain blocked by the
h ∈ Hdisrupted. Note that we only outline how these additional responses could be implemented.
However, we will limit our later evaluation to the already proposed responses.

Reordering trains , i.e., adjusting the sequence of trains can be included by not enforcing
Yavailable = Yactive such that for the active κ ∈ K′ alternative Zκ,π are available. Naturally, we
can influence the room for adjustments with the size of Yavailable.

Rerouting a κ ∈ K′ requires the introduction of an alternative κ ∈ Kalternative, which can be
used to improve Cdisrupted. Thus, we do not explicitly distinguish between rerouting or adding
relieve/backup trains. Instead, we allow the Primal-SSSP to take the actions which lead to
the best improvement of Cdisrupted. However, room for improvement is limited by the vehicles
available max(r).





      

3.4.2 Finding the most critical Disruptions with the SSSP

Next, we modify the Primal-SSSP to identify the Hcritical ⊆ H for a given Yactive. Thus, the
adapted model Dual-SSSP aims to increase C by blocking some h ∈ H. This task is prevalent in
network interdiction (for more background, see Smith and Song (2020)). Therefore, we adjust the
SSSP towards an interdiction model. As common in network interdiction, we include a budget
(kscenario), limiting |Hcritical| disruptions. Hence, by varying kscenario, we are able to adapt to
different requirements.

Since we assess an Yactive solution, all decision variables δκ,π are fixed to the given solution Yactive.
Consequently, if we prune all inactive N train from the SSN for all r ∈ R and od ∈ OD, we can
drop all δκ,π, no mater if active or inactive.

Furthermore, we can utilise the binary variable xh as indicator if the infrastructure section h is
blocked (xh = 0) or not (xh = 1). To find Hcritical, Dual-SSSP maximises C defined in (Eq. (1)).
However, since passengers still travel via the shortest paths available, we encouter the following
objective:
max (min C) = max (min

∑
od∈OD

∑
l∈L

codl · wl · podl ) (22)

This objective in Eq. (22) represents a classical leader follower situation (Smith and Song, 2020).
The leader, the Dual-SSSP tries to maximise Cdisrupted with deactivating some xh, while the
passengers take the best following action, i.e., the paths that minimise Cdisrupted. As suggested
by Smith et al. (2013), we dualise the passenger routing part of the M-SSSP, transforming the
max−(min) objective to max.

Therefore, we dualise constraints 9b and 9d, without modifying any other constraint of the
Primal-SSSP. Let α be the dual for 9b while −β is the dual for 9d. Subsequently, we can replace
the objective in 9a and constraints 9b and 9d, with the formulation in 23. Note that we are
adding all the remaining constraints of 9 to 23, but we omit them here for brevity.

max
∑

od∈OD

∑
n∈Nod

αod
n · γodn −

∑
r∈R

∑
l∈L

capacity(r) · grl · βl (23a)

s.t. αi − αj − βi,j ≤ ci,j · wi,j , ∀(i, j) ∈ Lod,∀od ∈ OD, (23b)∑
h∈H

xh ≥ |H| − kscenario, (23c)∑
l∈Lh

grl ≥ |Lh| · xh, ∀ r ∈ R, ∀h ∈ H, (23d)∑
h∈H′

critical

xh ≤ |H′
critical| − 1 +

∑
h∈H\H′

critical

xh, (23e)

βod
l ∈ R+, ∀l ∈ Lod, ∀od ∈ OD. (23f)

Note that the dualisation leads to a quadratic objective in Eq. (23a), since both grl and βl are
decision variables. However, according to Smith et al. (2013), we can linearise it with sufficiently
large bounds on β. Eq. (23b) stems from the dualisation.





      

Besides, we add Eq. (23d), to deal with a side effect. As stated previously, the maximal value for
C is Cworst-case; indicating that all services are cancelled, even if Hdisrupted = {}. Thus, Eq. (23d)
requires all grl to operate, unless the section i is blocked (xi = 0). Furthermore, we restrict the
total number of disrupted sections with Eq. (23c).

In some cases, we might want to exclude a known disruption given by H′
disrupted. One such

instance, is when we use the Dual-SSSP to iteratively identify Hdisrupted as candidates for Hcritical.
Thus we include Eq. (23e) to allow banning a given H′

disrupted. Note that the constraint is designed
specifically to still allow the case where H′

disrupted ⊆ Hdisrupted. This is a strict requirement, as
otherwise we would remove more than H′

disrupted from the possible solutions to the Dual-SSSP.

Due to the quadratic objective in Eq. (23a), we limit the Dual-SSSP to short turning and
cancellation, which represent a subset of responses to reduce the impact of disruptions in
Section 3.4.1. Thus, the reformulated Dual-SSSP provides an upper bound on Cdisrupted. On the
contrary the Primal-SSSP might have access to more responses to cope with the Hdisrupted.

3.4.3 Primal-Dual Algorithm for Finding the most Critical Disruption

Inside the AM, we combine the two introduced models to a primal-dual algorithm to identify
Hcritical for a given Yactive. Initially, we describe the fundamental properties of the algorithm.
Subsequently, we elaborate, how we scale the impact of a disruption by the number of disrupted
sections, allowing the algorithm to assess disruptions with varying number of simultaneous
blocked sections.

The algorithm aims to combine the benefits of the Primal-SSSP and Dual-SSSP. First, we use the
Dual-SSSP to identify a candidate Hcritical based on P and apply the Primal-SSSP to then obtain
an accurate Pdisrupted. Since the Dual-SSSP yields an upper bound on Pdisrupted, the algorithm
iterates until the current bound Pdisrupted is lower than the Pcritical for current candidate Hcritical.
For more background on Primal-Dual algorithms, we refer to Goemans and Williamson (1997).

We aim to identify the disruptions with the most adverse consequences, while also considering
different numbers of simultaneous disruptions. Thus, we propose to scale Pdisrupted whithin the
primal-dual algorithm. Without considering the number of disrupted sections k, any disruption
where |Hcritical| = max(K) is will have an impact which is at least as big as if the disruption only
concerned a subset of the same Hcritical. This case renders the consideration of any disruption
where k < max(K) obsolete. Thus, we propose to normalise the impact of Hcritical by the number
of disrupted sections k as in Eq. (24). With this scaling we can compare disruptions with different
sizes k ∈ K. We denote the critical disruption with Hdisrupted, where xh = 0 indicates that
section h is disrupted while xh = 1 indicates that h is unaffected.
Pscaled[%] =

Pnominal − Pdisrupted

|Hdisrupted|
(24)

Consequently, if we scale the vulnerability of Hdisrupted with Eq. (24) for a given Xdisrupted for the
Primal-SSSP and Dual-SSSP, we are capable of comparing disruptions with a different number





      

of simultaneously disrupted sections. Besides, as the normalisation is a linear transformation,
for any Hdisrupted, P dual

disrupted ≤ P primal
disrupted, P dual

scaled ≥ P primal
scaled holds. This relationship is the basis of

the Primal-Dual algorithm in Fig. 12.

Figure 12: Primal-Dual algorithm for finding the most critical disruption.

Result: Result
1 (Hcritical, Pcritical);
2 set

∑
i∈H xi = |H|;

3 set Pnominal = solve Primal-SSSP;
4 set P primal

scaled = 0;
5 set Kscenario = {1, 2, ..., kscenario};
6 while |Kscenario| > 0 do
7 for k ∈ Kscenario do
8 set

∑
h∈H xh ≥ |H| − k in Dual-SSSP;

9 set P dual
disrupted = solve Dual-SSSP ;

10 set P dual
scaled =

Pnominal−Pdisrupted
k

;
11 if Pmax, primal

scaled ≤ P dual
scaled then

12 set Hk,critical = HDual-SSSP;
13 set HDual-SSSP = HDual-SSSP \ Hk,critical ;
14 set HPrimal-SSSP = Hk,critical;
15 set Pprimal = solve Primal-SSSP;
16 set P k,primal

scaled =
Pnominal−Pdisrupted

k
;

17 if Pmax, primal
scaled ≤ P k,primal

scaled then
18 set Pmax, primal

scaled = P k, primal
scaled ;

19 set Hcritical = Hk,critical;
20 set Pcritical = Pprimal;
21 end
22 else
23 set K = K \ {k};
24 end
25 end
26 end
27 return (Hcritical, Pcritical);

Initially, the algorithm in Fig. 12 obtains the regular objective score (where no disruption
takes place). Subsequently, it iteratively increases the number of concurrent disruptions up the
maximally allowed kscenario. During each iteration, we obtain the approximately worst disruption
according to the Dual-SSSP.

If the relative increase is lower than the one of the currently known worst disruption Pmax, primal
scaled ,

we can remove this number of concurrent disruptions k from the set of possible numbers K.
Otherwise, we ban the found disruption in the Dual-SSSP, preventing of accounting of the same
disruption twice. Furthermore, we assess the found disruption with the Primal-SSSP for the
accurate relative increase P k,primal

scaled . If the increase is still higher than Pmax, primal
scaled , we define the

current disruption as the most critical disruption.





      

4 Case Study

This chapter consists of three sections and eventually aims to evaluate the proposed methodology.
Initially, we provide some implementation details in Section 4.1, before we outline the case study
data in Section 4.2. Finally, we provide a a brief overview on the experiments in Section 4.3,
before conducting two sets of computational experiments in Section 4.4 and Section 4.5, enabling
an evaluation of the methodology proposed in Section 3. Naturally, all the following content is
used to tackle SQ 4.

4.1 Implementation of the iterative Approach

In this section, we briefly describe how we implemented the heuristic approach that we use to
tackle the case study with the OM, before we provide background on the used software and tools.

4.1.1 Heuristic Architecture in the OM

The primary motivation is that the Slot Sequence Selection Problem (SSSP) in the OM is likely
very challenging, as it has been reported for similar approaches that integrate passenger routing
and timetabling (Polinder et al., 2021; Schiewe, 2020).

Fig. 13 provides an overview of the implementation of our heuristic: The heuristic has three
key outputs. Cnominal and Yactive are self explanatory. Cideal on the other hand is an additional
indicator, which we can use to derive a lower bound for Pideal in cases where we tackle the SSSP
with heuristic measures only. Since Cideal is obtained from the linear programming relaxation of
the SSSP, we are certain that Cideal ≤ Cnominal holds in any case.

Figure 13: The heuristic procedure implemented in the OM.
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The heuristic architecture utilises the iterative nature of the overall approach to its advantage, as
it has a solution pool of known Yactive that is feasible in the S-SSSP. Thus, we can use the best
known previous solution as a starting point for the fix and dive heuristic outlined in Section 3.3.6.
In the heuristic, we sort the κ ∈ K by the given priority, such that initially all express, then all
regional and finally all local trains are scheduled. Note that we do not relax any non-passenger
carrying trains.

After obtaining a solution from the fix-and-dive heuristic, we apply a local search procedure
that aims to improve the current Cnominal. To adapt the M-SSSP for the local search, we add one
additional constraint during the search. The constraint combines the current top nine known
configurations of Yactive with the Yactive given by the fix-and-dive search to a union given by
Ytop-ten-active. The additional constraint can then be given by:∑
(κ,π)∈Ytop-ten-active

δκ,π ≥ |Yactive| − 1, (25)

This constraint in Eq. (25) reduces the search space for alternative Yactive, and we aim to improve
a given solution by this procedure.

4.1.2 Implementation Details

We use a laptop computer with 32 GB RAM and an Intel Xeon E-2176M CPU with six cores
to run the case study. We implement the outlined process in python 3.9 using data structures
provided by the OpenBus Toolbox of Fuchs and Corman (2019), which in turn relies on the
python-igraph implementation of Csardi and Nepusz (2006). Note that we run all python code
with the -OO flag.

We solve all MIP formulations with the commercial MIP-solver GUROBI 9.5.0 (Gurobi Optimiza-
tion, LLC, 2022), through the python API. The MIP-solver may use up to twelve threads. As
there are many open source SAT-solvers available, we ran preliminary tests to identify a suitable
one, see Appendix A.2 for more information. Based on the outcome of the preliminary tests, we
decided on using MiniCard 1.2 provided by Liffiton and Maglalang (2012). The SAT solver is
single-threaded. We interact with the solver through the python-SAT library of Ignatiev et al.
(2018).





      

4.2 Case Study Data

As we apply the proposed approach on a real-life case study, we briefly introduce all used data
in this section. All data is kindly provided to us by Rhaetian Railway (RhB), a Swiss railroad
company. The case study data contains the infrastructure network, line plan, rolling stock and
information on expected demand.

4.2.1 Infrastructure Network and Timetabling Parameters

Figure 14: Macroscopic view on the infrastructure network.

We use the infrastructure provided by RhB which is similar to the one used by Fuchs et al. (2021).
Figure 14 provides an overview on the infrastructure. The network distinguishes itself because
many sections consist of only a single track. Furthermore, it has a length of 380 km. Following
the example of Fuchs et al. (2021), we enforce a headway of 120 seconds at every location. This
headway value is achieved in practice and selected following technical advise of RhB (RhB, 2005,
2022).

RhB provides the infrastructure on a microscopic level of detail, and similar to Fuchs et al. (2021),
we aggregate it to a mesoscopic level of detail. As the data only contains information on the
length of a track but no traversal times are available, we use the assumptions of Fuchs et al. (2021)
to approximate the traversal time for a given track. Therefore, we approximate the traversal
time ŵa by a constant speed per speed category, as seen in Table 2, which are identical to the
values of Fuchs et al. (2021). Fuchs et al. (2021) state that the trip times seem reasonable (SBB,
2021).





      

Table 2: Speed in m/s per train category to approximate ŵa.

cargo local regional express

19 21 20 21

Additionally, the data yields a minimal stop time of 42 seconds and a connection time for
passengers of three minutes. Thus, we define µaccess = 180sec sec and µegress = 0sec for
passengers. Besides calculating minimal trip times, we also have to define the maximally allowed
duration of the trip and dwell activities in the timetable. In their assessment, Fuchs et al. (2021)
show that some flexibility on the trip duration is highly beneficial in finding feasible timetables
for this network. Therefore, we include additional slack for all trip times where the track length
exceeds 300 m, while shorter tracks must be passed with constant trip times. Thereby, we aim to
include as much flexibility as possible while considering that short tracks might require excessive
acceleration if trip time varies. We allow the dwelling at any station track for further flexibility,
even if no commercial stop is scheduled. Table 3 summarises our approach on defining the
bounds.

Table 3: Bounds per activity in the EAN .

activity type ∀a ∈ Adwell ∀a ∈ Atrip

non-commercial commercial length < 300m length ≥ 300m

wmin 0 sec 40 sec ŵa ŵa

wmax 100 sec 140 sec ŵa ŵa + 100 sec

Following the current practise of RhB and Swiss standards, T is one hour (RhB, 2021b). Fur-
thermore, Fuchs et al. (2021) showed, that a time discretisation dt of 20 seconds is appropriate,
hence we opt for the same value. Note that this is a finer granularity than the commonly used
60 seconds in PESP (Caimi et al., 2017). Besides, as Dekker et al. (2021), we apply constraint
propagation to tighten all wmin

a , wmax
a for all a ∈ Aanchor.

4.2.2 Line Plans for the Case Study

Following the scope of this thesis, we use the current line plan of the RhB depicted in Fig. 15 as
a given input. It consists of 10 lines which all operate at a frequency of once per hour. Since
we use directed lines (κ ∈ K), these ten lines amount to twenty directed lines. Furthermore, in
accordance with RhB, we split the express line from Disentis to Schuls in Chur, such that this
one line yields four directed lines. Thus, we end up with 22 directed lines for passenger service.





      

Besides, there is a shuttle service for cars through the Veraina tunnel that operates twice per
hour (see Fig. 14 for the location of the Veraina tunnel). Furthermore, the RhB also plays a vital
role as a cargo carrier (RhB, 2005). Hence, we also include the cargo trains used by Fuchs et al.
(2021).

Figure 15: Network of the Rhaetian Railway (RhB) (RhB, 2021b) with an excerpt of the infras-
tructure.

 

To prevent the OM from providing solutions, where passengers would need to change between
trains at unsuitable stations, we limit the set of stations where transfers between trains are
allowed. Appendix A.1 provides a visualisation of the remaining subset. Similarly, we restrict
the change stations in the AM to stations where infrastructure for transferring between trains is
available. A visualisation is given in Appendix A.1. Lastly, we limit the stations where trains
can short-turn. A station must have at least two station tracks to allow short turning. We refer
to Appendix A.1 for a visualisation. All these assumptions have been given to us by RhB, (RhB,
2022).

Eventually, we add some non-mandatory bus lines, depicted in Fig. 16 that can be used as
alternative services to respond to disruptions in the Primal-SSSP. These replacement services
only serve stations, where RhB provides transfers in the regular line plan, which is similar to
current practices of RhB (RhB, 2022). Furthermore, the replacement services only serve two stops
per line. Nevertheless, if two adjacent lines are activated, it is possible to provide a service that
spans more than two adjacent stations.





      

Figure 16: Bus lines available as response measures.
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Since we already use an approximation to estimate the trip times for trains, we also opt for an
approximation of the trip times for buses. Under the advice of RhB, we use a constant 18 m/sec
to estimate the trip times based on the length of the railway infrastructure RhB (2022). This
procedure is a rough approximation; however, we concur with this approximation given the
purpose of this case study.

Note that the speed of replacement services is lower when compared with any train. This
difference accounts for additional time to cover detours and hindrances in road traffic.

4.2.3 Train Slot Sequence (TSS) Generation

Since the current line plan and the work of Fuchs et al. (2021) define the routes and stop sequences
for all trains, we can use them as input. Thus, following the definition of the TSS in Section 3.2.2,
generating all available TSSs in Zκ,π ∈ Yavailable is straightforward.

As described in Section 3.2.2, we use t̂n,e to calculate the time needed to reach any (n, e) ∈ Sκ.
We obtain t̂n,e by calculating the minimal required time to reach the (n, e) pair from the root
pair of Sκ. To allow the TOC to include some slack, we scale t̂n,e with the parameter µscale before
rounding it to the nearest value, such that the granularity µdt that is demanded by the TOC for
this Sκ is ensured. As we always round t̂n,e based on the time from the root pair of Sκ, rounding
errors do not accumulate.

Following Section 3.2.2, we may assign the time slots given by tmin
z , tmax

z based on these rounded
timestamps. As also given by Section 3.2.2, we distinguish between commercial and non-
commercial slots and use the parameters given in Table 4. To generate all TSSs given by
Zκ,π ∈ Yκ for one κ, we discretize T by the corresponding µspread parameter. This step yields
π ∈ {0, µspread, ..., T − µspread} to create all Zκ,π for the corresponding κ. Thus, the TOC defines
the number of available Zκ,π with µspread





      

Table 4 provides all parameter configurations we use to generate the TSSs given by Zκ,π ∈ Yavailable.
We selected these parameters based on recommendations from RhB (RhB, 2022).

Table 4: Input parameters to calculate the TSS per train category.

µscale µcom µgem µspread µdt

express 1.075 180 sec 300 sec 120 sec 60 sec
regional 1.075 180 sec 300 sec 120 sec 60 sec
local 1.075 180 sec 300 sec 120 sec 60 sec

bus 1.075 180 sec 180 sec 60 sec 60 sec

auto train 1.100 600 sec 300 sec 300 sec 60 sec
freight train 1.100 900 sec 300 sec 300 sec 60 sec

4.2.4 Rolling Stock

In accordance with RhB, we base our vehicle pool on the vehicles available to RhB (RhB, 2021a).
summarised in Table 5. Note that we assign the rolling stock in form of predefined configurations,
which provides the capacity to transport passengers. Furthermore, we define µaccess = 180 sec
and µegress = 180 sec for all vehicles.

Table 5: Available rolling stock, based on RhB (2021a).

category type max(r) capacity

express engine with carriage set 20 280
regional electrical multiple unit 25 300
local electrical multiple unit 8 150

bus replacement bus 0 / 5 / 10 45

cargo auto train ∞ -

cargo freight train ∞ -

4.2.5 Defining the Parameters for Generalised Travel Time

As introduced in Section 3.1.3 we use the the total generalised travel time to evaluate the
system-wide performance. We use the same values as Zhu and Goverde (2020b), such that cs for
in-vehicle-time of l ∈ Ltrain is weighted with cs = 1, while any other l, used for waiting, accessing
and excessing is weighed with cs = 2.5. To calculate the cost of a bypass for one od ∈ OD,
given by codmax, we adapt the minimal generalized travel time required for this relation (codmin),
which corresponds to the shortest path from vo to vd in the SSNod

pax. To obtain codmax, we use the
following,
codmax = codmin · η (26)





      

which limits the maximum accepted detour, such that it is lower than codmin scaled by η. Similar
to Zhu and Goverde (2020b), we choose η = 2. Consequently, passengers leave the system if
they have to spend more than twice the generalised travel time compared with the best possible
connection.

4.2.6 Demand Scenarios

We consider three demand scenarios, an artificial one (ODartificial) and two (ODsubset, ODfull)
which are derived from real-life demand provided by RhB.

As indicated by its name, ODartificial is a completely artificial demand scenario, which we crafted
ourselves, and its purpose is to provide a simple case to assess the methodology. As visible in
Fig. 17, ODartificial contains 8 OD relations, each with a demand of 50 passengers. Furthermore,
all these OD-relations are symmetric, i.e., the number of passengers travelling from and to some
o and d are equal.

Figure 17: ODartificial visualised with a macroscopic view of the infrastructure.

ODfull on the other hand is a real-life demand scenario provided by RhB and is the same as the
ODfull scenario used by Fuchs et al. (2021). Following Fuchs et al. (2021), we scale the daily
demand by 0.1 to get a an approximation of the average demand during T . The resulting ODfull

consists of 101 origin/destination locations and contains 1747 od ∈ OD.

Finally, the third scenario, ODsubset is a subset of ODfull, as it only contains 20 of the 101
origin/destination locations of ODfull. We select the subset of origin and destination locations to





      

maximise the total number of passengers over the remaining nodes. Thus, we aim to extract a
network where the 20 most important nodes remain.

Figure 18: ODsubset visualised with a macroscopic view of the infrastructure.

Given that ODfull contains more than 1000 relations, we do not provide a visualisation. However,
Fig. 18 provides a visualisation of ODsubset. ODsubset contains 173 OD-relations. Furthermore,
the sum over all pod ∈ ODsubset is 1831.13 passengers, compared to ODfull, where the sum
amounts to 3300.89 passengers. Thus, ODsubset contains less than 10% of the od relations but
more than 50 % of the total demand of ODfull.





      

4.3 An Overview on the Computational Experiments

We use the case study to investigate the usefulness and applicability of our approach defined
in Section 3. Following our intentions stated in Section 2.3, the proposed approaches should
provide a timetable where resilience towards the critical disruption is increased. Besides, we
also guide planners towards critical infrastructure elements. As introduced in Section 4.2, we
allow short turning and cancellation of all trains as responses, since this is common practice
at RhB. Furthermore, depending on the chosen setting, we allow the AM to use either no-buses,
five-buses or ten-buses to respond to a disruption, as this is also a frequent measure of RhB.

Our experiments are structured in two sections. Initially, we conduct individual assessments to
evaluate the OM (proposed in Section 3.3) and AM (proposed in Section 3.4). Subsequently, we
assess both modules combined in the proposed iterative approach given in Section 3.2. To provide
readers of this thesis with additional material, several figures that visualise the results of the
computational experiments are available as interactive html files. Any figure whose description
is linked to Appendix A.3 is provided as html -file. Following the instructions in Appendix A.3,
the html -files can be inspected interactively, providing the combined information of a table and
figure.

4.4 Computational Experiments for Individual Assessments

The aim of the individual assessments is to identify if each module performs as intended. Besides,
we can provide some insights on the results. The order of the assessments follows the sequence of
steps in one iteration of the iterative approach given in Section 3.2.

Initially, in Section 4.4.1, we examine the OM’s capability to optimise timetables and evaluate,
if using heuristics is appropriate. Next, we see if we may shrink the SSSP in Section 4.4.2.
Subsequently, we assess the AM. Initially, we assess if the primal-dual algorithm is capable
of detecting the critical disruption in Section 4.4.3. We further test the iterative approach in
Section 4.4.4 by completing one iteration, assessing the result of the adapted SSSP in the OM once
more with the AM. Lastly we try to enhance the resilience of a timetable against two simultaneous
disruptions in Section 4.4.5.

4.4.1 Using the OM to Optimise Timetables

In our very first investigation, we assess the capability of the SSSP within the OM to provide a
timetable. Besides, we aim to assess the fix-and-dive heuristic (Section 3.3.6) integrated in the
heuristic architecture (implemented in Section 4.1.1). Thus, we compare the heuristic against
solving the SSSP directly. We solve the case study for each OD scenario in three configurations.
The first configuration emphasises on the M-SSSP alone, as we use the passenger trains but
disable the S-SSSP. In this no-conflict case, no conflict detection is active and any feasible
M-SSSP solution is also feasible in the S-SSSP. The second configuration contains all passenger
trains and the third all passenger and cargo trains. Naturally, we do not disable the S-SSSP in
the second and third configuration.





      

Consequently, we end up with nine models to solve, where the first three should be easiest to solve
while the challenge gradually increases. To compare the heuristic against the regular MIP solve,
we run each model twice, once as full-solve and once as heuristic. For the full-solve, we
limit the MIP-solver to 3600 sec of computation time for all ODartificial and ODsubset, while we
allow 7200 sec for ODfull, as it is considerably larger. On the other hand, the fix-and-dive
heuristic may use up to 200 sec per step. Furthermore, we allow the improvement heuristic to
use another 400 sec. Note that we supply both approaches with a warm-start, such that the
results are comparable. We obtain the Y∗

active used as warm-start by querying the S-SSSP for
a feasible Yactive before starting the solving processes. For each configuration, we report the
required computation time, Cnominal and the optimality gap. Note that we use Cideal for the
heuristic to calculate the gap, while for full-solve, we can use the gap reported by the MIP
solver.

Table 6: Results for solving the SSSP with passenger trains and no-conflict.

ODartificial ODsubset ODfull

full-solve time [sec] 5.4 145.7 7200.0
Cnominal [h] 972.5 1583.1 2378.5

gap [%] 0.00 0.00 2.09
heuristic time [sec] 141.0 755.0 2336.4

Cnominal [h] 972.5 1583.1 2335.0
gap [%] 0.00 0.00 0.28

Table 6 summarises the results for the no-conflict run with passenger trains. A first observa-
tions is that for the ODartificial and ODsubset cases, it is apparent that the heuristic approach
requires considerably longer computation time. This is most likely due to the fact, that the
fix-and-dive heuristic solves the SSSP for each κ once. full-solve on the contrary requires
only one MIP to be solved, and is therefore faster. However, all four results yield an optimal result,
where the gap to Cideal is 0.0%. A second observation is, that for ODfull, full-solve yields a
considerable worse result than heuristic, while neither provides a solution with a gap of 0.0 %.
A reason for full-solve performing worse could be, that in order to allow M-SSSP and S-SSSP
to interact via a callback, we have to set the Lazy parameter in the GUROBI-solver (Gurobi
Optimization, LLC, 2022). This deactivates certain pre-solve procedures of the MIP-solver and
thus might degrade its performance (Gurobi Optimization, LLC, 2022).

Table 7: Results for solving the SSSP with passenger trains.

ODartificial ODsubset ODfull

full-solve time [sec] 3600.0 3600.0 7200.0
Cnominal [h] 1343.3 1627.1 2440.1

gap [%] 27.6 2.70 4.57
heuristic time [sec] 738.7 1254.6 3971.5

Cnominal [h] 982.5 1602.0 2381.6
gap [%] 1.03 1.26 2.28





      

Table 7 summarises the results for the run with passenger trains. Given that in these runs, the
S-SSSP is no longer ignoring conflicting trains, we can expect the SSSP to be more challenging.
When we compare the results in Table 7, it is observable, that heuristic excells in both, required
time and optimality gap for any OD. Besides, none of the full-solve approaches terminated
within the time limit. Further noticeable is the difference between the gaps of the two ODartificial

runs, as fill-solve yields a result far from optimal, whereas heuristic leads to a result that
is almost within 1% of Cideal. Finally, it is observable, that for a bigger OD, generally more
computation time is required.

Table 8: Results for solving the SSSP with passenger and cargo trains.

ODartificial ODsubset ODfull

full-solve time [sec] 3600.0 3600.0 7200.0
Cnominal [h] 1433.8 1672.0 2452.1

gap [%] 32.1 5.32 5.04
heuristic time [sec] 1373.7 2134.0 4867.9

Cnominal [h] 985.0 1615.9 2434.9
gap [%] 1.28 2.02 4.57

Table 8 summarises the results for the run with passenger and cargo trains. As these instances
contain more trains, the challenge to solve the SSSP is likely increasing once more. When we
compare the results in Table 8, it is observable, that once more, heuristic excels in both,
required time and optimality gap for any OD. However, while for ODartificial, the difference of
the optimality gap is remarkable, it is considerably smaller for ODfull. When we compare the
results with the previous runs, it is apparent that the computation time for heuristic generally
increases. Furthermore, none of the full-solve runs stops within the time limit.

These insights provided by Tables 6, 7 and 8 match with similar findings in literature, where
integrated timetabling problems are frequently tackled with heuristics, see for example Schiewe
(2020); Polinder (2020); Zhu and Goverde (2020b). These results indicate that directly solving
the MIP is likely not a viable strategy for our case study. Thus, we restrict the OM to rely on
heuristic for every successive experiment. Using heuristic consistently has the advantage that
the results stem from the same approach and are comparable. Furthermore, since heuristic
yields also a lower bound (Cideal), we can assess the quality of a solution.

Before we conclude, we briefly investigate why the last cases with passenger and cargo trains
given by Table 8 are challenging for both full-solve and heuristic. We therefore examine a
resulting EAN provided by the S-SSSP, provided in Fig. 19. Since the case study consists of a
network and not a corridor, we opt for a three-dimensional representation, where x and y are
the coordinates, while z is the time in seconds. Fig. 19 reveals that infrastructure utilisation
increases, especially in the more central network parts. Recall that most of the sections between
stations only consist of one track. Consequently, passing/overtaking is often limited to suitable





      

stations. Fig. 19 reveals some recurring patterns, which are likely due to the limited possibilities
to pass/overtake. Following this assumption, inserting cargo trains to the passenger further
restricts the room for adjustment. Subsequently, finding an timetable with Cnominal close to
Cideal is challenging, if even possible. However, all listed hypotheses are based on assumptions.

Figure 19: Example timetable as 3D-time-space diagram, where z is time in seconds and x and y
are coordinates in space (available as html (Appendix A.3)).

4.4.2 The effect of Shrinking the Instance Sizes in the M-SSSP

In section Section 3.3.7, we describe some procedures to reduce the number of variables in the
M-SSSP required to route the passengers. While the pruning procedures are straightforward,
the idea of bundling od relations by origin (Bull et al. (2019)) or departure locations has not
been adopted widely yet. Hence, we specifically focus on the effect that bundling od has on the
number of required variables in the M-SSSP.

Table 9: Number of required variables in the M-SSSP in the OM.

Bundling method None by origin by destination MIP heuristic

ODartificial 72’143 72’143 72’143 72’143
ODsubset 895’846 275’113 299’173 251’991

ODfull 4’170’854 940’998 1’000’368 854’578

To provide some insights, we assess the impact of the outlined bundling procedures on the M-SSSP





      

used in the previous experiments, summarised in Table 9. The effect of bundling depends on
the OD scenario and the bundling method. However, our proposition to use an MIP heuristic to
bundle the od relations outperforms any other method. That none of the bundling approaches
yields a reduction for ODartificial can be expected, as no od pairs share an origin or destination.
However, for the other two cases, the impact is considerable. The biggest reduction is achieved
with the MIP heuristic for ODfull, where 79.5 % of variables are removed.

4.4.3 Using the AM to Detect Hcritical: One Disrupted Link

Complementary to the investigation of the OM, we succeed to assess AM, which contains the
Primal-SSSP and Dual-SSSP in the form of the primal-dual algorithm. Our assessment consists
of two stages. Initially, we start with a detailed example for one case, allowing a more in-depth
understanding of how the algorithm works. We select a test case with ODartificial, passenger trains
and no-conflict for the detailed investigation of the primal-dual algorithm. We specifically
chose this configuration to minimise any side effects affecting the interpretation of the result.
With the same intention, we set we set K = {1} for the primal-dual algorithm. To obtain
some contrast, we use three different responses. In the first one, no-buses, only short turning
and cancellations of scheduled trains are allowed. The second configuration, five-buses may
also use up to five replacement buses to mitigate the impact of a disruption. Analogously, the
last configuration is ten-buses. After optimising the configuration with the OM, we submit the
instances to the AM.

Fig. 20 visualises the results of the three assessments. While the x-axis provides the number
of required iterations, the y-axis yields the values for Pdisrupted in P , which we obtain from
the Primal-SSSP and the Dual-SSSP in the primal-dual algorithm. Since Dual-SSSP has
fewer response measures, its values correspond to the no mitigation entries. Contrarily, the
Primal-SSSP may have additional responses to reduce the impact of a disruption, thus we label
these with with mitigation.

It is apparent, that in Fig. 20 the number of iterations depends on the number of buses available.
If no buses are available (no-buses), the first candidate for Hcritical found by the Dual-SSSP is
the actual Hcritical, as the Primal-SSSP can not apply any further responses. Thus, P is equal
for both models. Besides, as one is the dual of the other, P must be equal according to strong
duality (Conforti et al., 2014).





      

Figure 20: Results of the primal-dual algorithm (available as html (Appendix A.3)).

(a) no-buses

(b) five-buses

(c) ten-buses

A different picture is given, when five-buses are available in Fig. 20. Depending on the
Hdisrupted, the Primal-SSSP is able to reduce the impact considerably and the gap between the
Dual-SSSP and the Primal-SSSP ranges from 10.9% up to 30.0%. It takes 17 iterations, until
the Dual-SSSP can no longer provide any Hdisrupted, where P is higher than the Pcritical for the
current candidate Hcritical. If more buses are available, the number of iterations increases up to
32. Similarly, some of the observed gaps between the Primal-SSSP and Dual-SSSP are further
amplified, with the biggest gap being up to 34.2 %. However, such an improvement is not possible
in all cases, as the shortest gap only spans 12.7%.

In general, Fig. 20 shows that more buses increase the number of iterations required to find
Hcritical. On the other hand, when looking at Pcritical, it is apparent that more buses reduce the
vulnerability, as the impact on P is reduced by 11 % between no-buses and five-buses, while
between five-buses and ten-buses, a further 1.7 % of P can be recovered.





      

Figure 21: Location of Hcritical depending on no-buses/five-buses/ten-buses.
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To conclude the detailed assessment of the AM and its primal-dual algorithm, we examine the
location of Hcritical, depending on the chosen configuration as given in Figure 21. It is apparent,
that the number of buses also affects the location of Hcritical. In the case of no-buses, Hcritical

is blocking a section with the highest passenger flow. However, with five-buses or ten-buses,
the location of Hcritical is in the Veraina tunnel, a section where no bus bridging service can be
provided (see Fig. 14 for the location of the tunnel).

4.4.4 Using the OM to increase Resilience against one Critical Link

To round off the individual and detailed investigations, we once more assess the OM, but this time
we focus on its capability to adapt a given timetable to be more resilient against Hcritical. Again,
we focus on the test case with ODartificial, passenger trains and no-conflict, to avoid any side
effects that might obscure the solution. As an input, we use the respective Hcritical for no-buses,
five-buses and ten-buses as detected in the previous chapter. Furthermore, we set λ = 1/3,
which means that we reroute one third of the pod which can choose an alternative connection.

After adapting the SSSP in the OM, we assess the resilience of the adapted solution once more in
the AM. Fig. 22 provides the bathtub curves before and after the adaptation. While the x-axis
provides the time, the y-axis yields the performance P , such that we can plot three curves,
Pnominal for the non-disrupted state and Pcritical once for the case of limited response as given by
Dual-SSSP and once as full response as given by the Primal-SSSP.

For the no-buses case, Pcritical improves from 35.9% to 58.4% Recall, that we observed that
Hcritical for the no-buses case is located differently than as in the other two cases. In the other





      

two cases, including alternative connections lead to an improvement of Pcritical from 46.9% to
73.3 % and from 48.6 % to 75.9 % for five-bus and ten-bus respectively.

Besides, it is worth mentioning that in none of the adapted cases, an increase in Pnominal is
observable. Thus, even though we adapt the M-SSSP to route some passengers via redundant
connections, the resulting timetable provides high-quality connections when passengers can choose
their route freely. If they to do so, we obtain the same Pnominal as initially. Consequently, these
solutions represent the ideal case, where we could increase the resilience against Hcritical without
sacrificing some of Pnominal.

Figure 22: Bathtub curves for Hcritical (available as html (Appendix A.3)).

Before adaptation

(a) no-buses (b) five-buses (c) ten-buses

After adaptation

(d) no-buses (e) five-buses (f) ten-buses

For further insights, we investigate the effect on the flow of passengers, as provided in Fig. 23
for the five-bus cases. Fig. 23(a) provides the cumulative flow for all pod passing over one
section h ∈ H, separated by direction which results from the first solution of the SSSP. It is worth
pointing out, that in this solution, no passengers travel via the Albula tunnel (for the location of
the tunnel, we refer to Fig. 14). Fig. 23(b) yields some contrast, as after forcing some passengers
on redundant connections and re-solving the SSSP, we can observe an increase of passengers on
the western parts of the two center loops.





      

Figure 23: Effect of enforcing redundant connections on passenger flow

(a) before adaptation (b) after adaptation

4.4.5 Using the OM to increase Resilience against two Simultaneously Disrupted Links

As the last computational assessment part of the detailed examinations, we briefly consider two
simultaneous disruptions. In contrast to the previous experiments, we consider a realistic scenario
for ODsubset with passenger trains and set K = {2} for the primal-dual algorithm. Similar to
the previous experiment, no-buses, five-buses and ten-buses are available to respond to the
disruption. λ is again set to 1/3.

The results of the assessment are given in Fig. 24. An initial remark is that the approach is
capable of finding the critical disruption even in cases where they occur pairwise. Secondly, as we
are considering passenger trains and prevent conflicts, we can not find a solution where Pnominal

is equal to Pideal. However, with a difference in P of 2.0 % before and 1.0 % after the adaptation,
both gaps remain small and acceptable from the viewpoint of RhB (RhB, 2022). Furthermore,
these findings match with the observations in Section 4.4.1. An additional insight given by Fig. 24
is that the impact of a disrupted Hcritical on P is remarkable, since Pcritical for the no-buses case
degrades to 36.1 % of Pideal. Adding buses in five-buses and ten-buses allows a considerable
reduction of the impact, as 57.3 % and 61.2 % of P remain.

Fig. 24 also indicates, the adaptation of the timetable yields no improvement in Pcritical for
no-buses and the five-buses case, while in the ten-buses, a minor gain from 61.2 % to 61.4 %
results. Thus, these results indicate that the approach fails to improve the resilience of the
timetable for the detected Hcritical. To investigate a conceivable reason for this finding, we briefly
consider the locations of h ∈ Hcritical for the ten-buses case, before the timetable is adapted.





      

Figure 24: Bathtub curves for Hcritical with K = {2} (available as html (Appendix A.3)).

Before adaptation

(a) no-buses (b) five-buses (c) ten-buses

After adaptation

(d) no-buses (e) five-buses (f) ten-buses

Fig. 25 depicts the locations of h ∈ Hcritical for the ten-buses with the cumulative flow of
passengers before (Fig. 25(a)) and after allowing the Primal-SSSP to respond with ten-buses to
the disruption. It is observable, that with ten-buses, the flow of passengers generally increases,
especially at sections close to one of the h ∈ Hcritical. Furthermore, we can also find a possible
deduction, why increasing the resilience of the timetable failed. When we remove the sections
h ∈ Hcritical, the network separates in two completely disconnected parts. Thus, rerouting some
passengers via redundant connections is not possible.





      

Figure 25: Passenger flow and locations of h ∈ H for two simultaneous disruptions.
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(b) with ten-buses as response

We already introduced the possibility of such a scenario when we introduced our approach in
Section 3.2. Note that although we can not increase the resilience of the timetable, we still can
provide essential insights. One such insight is that using buses can be highly beneficial. Further,
we managed to further improve the Pnominal in the second run of the OM. However, we cannot
increase resilience due to the location of the disruptions, splitting the network in two. When
we discussed this result with our partners at RhB, they confirmed that they are aware that such
scenarios of Hcritical can occur. Indeed, this is why RhB frequently uses buses as a response to
disruptions. Nevertheless, as our approach allows using buses to increase Pdisrutped in such a case,
RhB confirms its value, even if improving the resilience with redundant routes is not possible
(RhB, 2022).





      

4.5 Computational Experiments to Assess the Iterative Methodology

The second set of assessments expands on the insights of the first set, as we apply both the
OM and AM in the iterative approach. We conduct a total of nine experiments. We allow the
primal-dual algorithm in the AM to select a k ∈ K with K = {1, 2, 3}. To allow comparison over
all experiments, we limit the scope to five-buses as response. We split the experiments in
groups of three, where each single experiment in such a group corresponds to a OD scenario.

In the first group, we use the passenger trains and again disable the S-SSSP in the OM. This
configuration is chosen to replicate an instance with low infrastructure utilisation. Consequently,
this configuration allows us to assess the methodology under almost ideal circumstances, with
few side effects to consider. In the second group, we use the instance with only passenger trains
scenario. Finally, in the third group we include all passenger and cargo. From this arrangement,
we expect the instances to be gradually more challenging to optimise in the OM. Hence, we can
assess the effect of increasing difficulty in the OM on the overall approach.

Provided that in previous experiments (Section 4.4.4), 1/3 for λ has been suitable, we again use
λ = 1/3. Besides, we run each experiment for ten iterations. We opt for ten steps based on two
considerations. Firstly, we aim to include enough iterations to capture how Pnominal and Pcritical

evolve. Secondly, we expect larger instances with ODfull to be computationally challenging in
the OM and AM. Given that we aim to provide an approach applicable in practice, a total time of
less than 24 hours to set up and run each approach for ten iterations is desired. A time frame of
24 hours has also been approved by RhB (RhB, 2022).

4.5.1 Assessment with passenger Trains and no-conflict Detection

As introduced, the first assessment of the iterative approach tackles all three OD scenarios without
checking for any conflicts in the S-SSSP in the OM. We run each scenario for ten iterations. Fig. 26
provides the results in the form of adjacent bathtub curves, where after each assessment in the AM,
we denote the results of the current iteration. As introduced in Section 3.1.3, Pideal = 100 % and
Pworst-case = 0% limit the performance range of any bathtub. For each Hcritical, we report the
Pnominal for the non-disrupted timetable with the nominal performance curve. In addition, the
plots provide the curves for Pcritical for Hcritical with the limited response and the full response.
While the full response yields Pcritical when all five-buses are used in the response, limited
response holds Pcritical with only short turning and cancellation as responses, but without the
five-buses. Note that we display limited response mainly for illustrative purposes, as it allows
us to assess the effect of using five-buses on Pcritical. However, we generally focus on Pnominal

and Pcritical for the full-response.

In Fig. 26, we can see that it is possible to solve any of the 20 instances for ODartificial and
ODsubset in the OM to a difference of less than 1% between Pnominal and Pideal. Initially, the
solutions of ODfull do not exceed the 1 % difference either. However, the final iteration yields a
difference of 1.1%.





      

Figure 26: Performance P during 10 iterations with no-conflict and five-buses (available as
html (Appendix A.3)).

(a) ODartificial

(b) ODsubset

(c) ODfull

Interestingly in Fig. 26, all three OD yield a solution with the highest Pcritical at the second
iteration when using a full response. The subsequent evolution of P strongly differs for each OD
scenario. We see an absolute increase for ODartificial in Fig. 26(a) of 28.8 %, an increase of 1 % for
ODsubset (Fig. 26(b)) and 1.1% ODfull (Fig. 26(c)). Although, the improvement for ODartificial

clearly outperforms the two other OD, all three result indicate that we are able to improve the
resilience in all three cases. Even in the case of ODsubset, with the lowest absolute improvement
of 1 %, we reduce the vulnerability by more than 1/20 (Fig. 26(b)). Consequently, we also have
to consider the initial Pcritical, as a higher value leaves less room for an absolute improvement in
P .

Using five-buses adds an additional 23.0%, 3.7% and 2.3% to Pcritical for each OD scenario,
when focusing on the second iteration. Finally, considering the development following the
second iteration, the results vary. While for ODartificial, Pcritical briefly dips at iteration 3, it
recovers and stagnates from iteration 4 on. Similarly, ODsubset stagnates from iteration 2 on
and no more improvements in Pcritical is observable. A contrasting impression is given by the
ODsubset scenario in Fig. 26(c), where we observe a degradation of both Pnominal and Pcritical

over the iterations. A possible explanation for this observation is that forcing some passengers on
redundant connections in the SSSP might have caused an over-correction of the passenger flows.





      

As a possible consequence, the adaptation of the timetable is too drastic and undermines our
intentions. However, since we store and display the results for all iterations, we may select any
of the available timetables. Thus, we would recommend to use the solution at iteration 2 for the
ODfull in Fig. 26(c).

4.5.2 Assessment with passenger Trains

The second assessment of the iterative approach considers all passenger trains. As stated in
Section 4.5.1 we iterate ten times and allow five-buses as response resources. Fig. 27 provides
the results in the form of adjacent bathtub curves.

Figure 27: Performance P during 10 iterations with passenger trains and five-buses (available
as html (Appendix A.3)).

(a) ODartificial

(b) ODsubset

(c) ODfull

It is apparent, that in contrast to the previous runs in Fig. 26, the differences between Pnominal

and Pideal increases in Fig. 27. This difference supports our insights in Section 4.4.1, and is likely
due to the fact, that we now consider conflicts between trains. Presumably, it is more challenging
to schedule the passenger trains such that Pnominal is closer to Pideal.

Further observable is that the differences vary depending on the OD. For ODartificial in Fig. 27(a),
the OM yields few solutions with Pnominal close to Pideal, with the smallest difference being 2.6 %.





      

For ODsubset in Fig. 27(b), the difference never exceeds 1.9%, with 0.9% as the minimal value
at iterations 8 to 10. As we have seen in Section 4.4.1 and Section 4.4.2 ODfull leads to a more
challenging model in M-SSSP, highly likely due to the higher number of od relations. Thus, a
bigger gap between Pnominal and Pideal can be anticipated for ODfull in Fig. 27(c). In fact, the
initial Pnominal at iteration 1 has an absolute difference of 2% to Pideal, offering a Pnominal of
98.0%. However, during the subsequent iterations, Pnominal decreases to 96.1% at iteration 2
before recovering to 97.0 % from iteration 7 on. When assessing the Pcritical, we can observe that
we manage to improve all three OD. For ODfull in Fig. 27(c), the initial Pcritical is at 82.0%,
while eventually at iteration 10, we report 83.0 %. However, as also Pnominal is lower at iteration
10 (98 % to 97 %), this improvement comes with a cost of resilience.

For ODartificial in Fig. 27(a), Pcritical increases from 52.8 % to 69.0 % before peaking at 77.8 % at
iteration 9 and then eventually falling to 66.2 %. Again, this erratic behaviour might be due to
an over-correction when we modify the M-SSSP to include redundant connections. If the aim is
to choose the iteration with the highest Pdisrupted, iteration 9 is the choice. However, this incurs
a considerable cost of resilience, hence solution 8 might be more preferable. Again, displaying
and storing all intermediate solutions is highly beneficial, as it enables a planner to select the
most appropriate one.

Finally, ODsubset in Fig. 27(b) provides us with a gradual improvement in Pcritical of initially
80.3% to 82.9 % at iteration 10. As iteration 10 also yields the result with the highest Pnominal

of 99.1%, iteration 10 presents a solution where we managed to do both, increase Pnominal and
Pcritical.

Eventually, Fig. 27 again demonstrates that the response with five-buses frequently manages
to increase Pcritical for any OD. However, there is one exception for ODfull at iteration 9 in
Fig. 27(c), where adding buses did not improve anything. In this case, Hdisrupted is likely affecting
infrastructure sections, where no buses can be used to respond to a disruption (i.e, longer
tunnels).

4.5.3 Assessment with passenger and cargo Trains

Eventually, we assess the iterative approach with passenger and cargo trains combined. Given
the higher number of trains, we can expect these instances to impose a more significant challenge
when compared to previous runs. This assumption is supported by the insights of our experiments
in Section 4.4.1, the results of Fuchs et al. (2021) which use the same data set and report, that
as a considerable fraction of the infrastructure network is single-tracked, finding conflict-free
solutions is not trivial. Fig. 28 visualises the evolution of P during the iterations. As expected,
the results differ from previous observations.





      

Figure 28: Performance P during 10 iterations with passenger, cargo and auto-trains (available
as html (Appendix A.3)).

(a) ODartificial

(b) ODsubset

(c) ODfull

When we briefly consider Pnominal for all instances in Fig. 28, we can clearly distinguish ODartificial

from the other two OD. As given by Fig. 28(a) ODartificial yields solutions, with a difference
between Pideal ( Pideal = 100 %) and Pnominal of initially 6.4 %, evolving to 16.4 %. Furthermore,
with increasing number of iterations Pnominal generally decreases, however some fluctuations
are observable. On the contrary, Pcritical increases from initially 57.5% to 65.9% at iteration 7.
Note that this increase comes with a cost of resilience, as after iteration 2, Pcritical increases but
Pnominal never reaches the initial Pnominal again. The decision, which iteration to select is not
straightforward, but when prioritising Pnominal over Pdisrupted, one would choose iteration 2. If
prioritising vice versa, iteration 7 yields the best choice. However, any solution in between might
also be appropriate, as for example iteration 5 offers a trade-off.

In contrast to ODartificial in Fig. 28(a), the result of ODsubset in Fig. 28(b) reveals a far less
erratic picture. The iterative approach manages to improve Pcritical from 80.3 % to 81.7 % at the
third iteration. Interestingly, also Pnominal can be improved from 97.1 % to 99.0 % from the first
to the third iteration. Subsequently, the efforts of enforcing alternative connections seems to lead
to a decrease of Pcritical to 80.9 % at iteration 10. Interestingly, Pnominal is only slightly affected,
falling by 0.1 % to 88.9%.





      

Finally, ODfull in Fig. 28(c) provides a similar picture to ODsubset in Fig. 28(b). However,
the difference between Pnominal and Pideal is initially substantially bigger. Pnominal starts at
95.5 % and gradually decreases until iteration 5 to a value of 93.2 %, before recovering to 97.2 %
throughout the remaining iterations. Pdisrupted increases from 80.1 % to 82.2 % until iteration 3,
before decreasing again. However, similar to Pnominal, Pcritical also recovers from iteration 56 on,
levelling off at 81.7 % at iteration 10.

When comparing all three instances in Fig. 28, it is apparent that the instance with ODartificial

seems to be much more challenging, given the differences between Pideal and Pnominal. One
possible cause is the difference on how the od-relations of the considered OD are structured.
Recall that ODartificial is specifically tailored to emphasise passengers travelling comparably long
distances with multiple transfers. Thus, this instance is likely more affected by the higher number
of trains since this reduces the freedom to arrange trains for minimal transferring times. On the
contrary, the real-life based OD have fewer passengers, which require more than one train to
reach their destination. Therefore, those two instances are possibly less drastically affected by
the higher number of trains. Furthermore, although we aimed to test our methodology with
three more challenging instances, we see that it is still capable of providing solutions, where we
manage to increase Pdisrupted.

4.5.4 Computation Time per Iteration

To summarise the iterative assessment results, we provide some insights on the computation
time. However, our approach consists of an ensemble of MIP-models. Thus, we do not report
computation times individually for the specific models but focus on providing an overview by
summarising the time required for one iteration in the experiments before. Note that these times
also include any overhead, such as setting up the models when iterating between the OM and
AM.

Fig. 29 provides an overview on the required computation time per iteration. One interesting fact
is that even though, ODartificial consists of only eight od-relations, it requires more computation
time than ODsubset in some cases, although the latter has more than twice the number of od-
relations. Again, the different structure of the demand might be a reason. A second observation
is that the time per iteration generally increases with increasing difficulty (i.e., more conflicts
between trains). Also apparent is that all instances with ODfull require considerably more time.





      

Figure 29: Box-plots to summarise the computation time per iteration (available as html (Ap-
pendix A.3)).

(a) passenger and no-conflict (b) passenger trains (c) passenger and cargo

For a more precise comparison, we additionally report the average computation time in Table 10.
Using these, we can also verify that we managed to remain within the defined time window of
24 hours in Section 4.5. Indeed, since none of the average computation times exceeds 2 hours, we
can summarise that for 10 iterations, we remain within the 24 hours.

Table 10: Average computation time in seconds for one iteration.

ODartificial ODsubset ODfull

passenger & no-conflict 1044.7 358.8 5500.5
passenger 1469.3 1817.8 7084.9
passenger & cargo 2948.5 2528.2 6908.9





      

5 Conclusion and Future Work

As a last element of the thesis, we will draw a conclusion in Section 5.1 and address the RQs
formulated in Section 1.3, before we provide some future research directions in Section 5.2.

5.1 Conclusion

We use the research questions posed in Section 1.3 as a guide to draw a conclusion. Initially, we
address the RQ before we move on towards the SQ 1 to SQ 5.

(Main) Research Question (RQ) How can we integrate the assessment and enhancement
of resilience in the strategical and tactical timetabling for railways?

Based on our literature review, we identified a research gap between the current state-of-the-art
in the railway planning process and proposed network-, and scenario-based approaches to address
disruptions. Consequently, we proposed a scheme that allows creating timetables from scratch
while identifying and addressing the critical disruption. To unify the objective throughout the
process, we opted for a demand centred performance metric based on generalised travel time.
Furthermore, we included passenger routing, track assignment and rolling stock circulation. As a
result, we faced a challenging task.

Consequently, we introduced the TSS, a structure allowing us to reduce the complexity drastically.
The concept of TSS is to restrict a train to time windows, similar to the TPE (Wang et al., 2020)
and the SI (Caimi et al., 2011b). Using the TSS, we proposed a decomposition scheme based
on logical-Benders decomposition (Hooker and Ottosson, 2003), enabling us to split the task of
timetabling in a master and a sub-problem. While we solved the former with a commercial MIP
solver, we formulated the latter as SAT.

Furthermore, as we consider the context of strategical planning, we can not rely on predefined
disruption scenarios. Thus, we proposed a primal-dual algorithm that identifies the critical
disruption under the consideration of all available response methods. In doing so, we combined
the advances in network-, and scenario-based approaches to obtain an accurate value of the
system performance.

Eventually, we arranged our work in two modules, which interact iteratively during the timetabling
process. To assess our proposition, we conduct a case study based on concrete, real-life data
provided by RhB. Throughout the case study, we conducted several experiments organised in two
groups.

In the first set of experiments, we evaluated each module individually. Our experiments concluded
that solving the timetabling model directly with the commercial solver is only appropriate for
small instances. However, we quickly obtained high-quality solutions by proposing and using a fix-





      

and-dive heuristic. For challenging models, the heuristic used only 2/3 of the given 7200 seconds
computational time while providing equal or higher quality results compared to solving the
model directly. Furthermore, for non-trivial instances, directly solving the model did not lead to
termination within the time limit and yields solutions with an optimality gap.

In subsequent assessments, the case study shows that the proposed approach can increase the
resilience of the timetable such that the performance during the critical disruption increases
from 35.9 % to 58.4 %, increasing the remaining performance by a factor of 1.63. Although this
result relies on an artificially generated demand, the insight is valuable. Another valuable insight
is that our procedure to identify and assess critical disruption also works for simultaneously
occurring disruptions. This capability is a criterion worth striving for, according to future
research directions outlined by Bešinović (2020).

Eventually, we applied the iterative approach to nine different instances. In addition, we gradually
increased the number of trains within the network for further insights. We observed that our
proposition performs as intended under ideal circumstances, although the results are affected
by the considered demand scenario. Frequently, the solutions differ in both resilience against
the critical disruption and performance under regular (nominal) circumstances. Thus, selecting
the appropriate solution sometimes requires a trade-off. Here, we can rely on an advantage our
approach provides, because we store and present all solutions generated during the iterations.
Based on this overview, a practitioner can select and implement the most suitable solution.

To summarise, we can successfully integrate the assessment and enhancement of resilience in
railways’ strategical and tactical timetabling with our proposed iterative approach, which finds
and responds to the most critical disruption while solving the timetabling task. Thus, we proceed
to the SQ 1.

SQ 1 What state-of-the-art metrics/measures are suitable to assess the resilience of
a railway timetable during timetabling?

We settled on using generalised travel time, as it is suitable to optimise a timetable (Caimi
et al., 2017) and also to assess its performance during disruptions (Zhu and Goverde, 2020b).
Therefore, we developed a performance metric based on generalised travel time to evaluate the
nominal and disrupted performance. Given that the metric is performance-based, we could
follow the recommendations of both Zhou et al. (2019) and Bešinović (2020). Both emphasise
that performance-based metrics are the preferable choice. Furthermore, since we were using
a demand centred perspective, we addressed a future research direction outlined by Bešinović
(2020), recommending to consider demand centred resilience. Consequently, we can state that
our performance metric follows the state-of-the-art recommendations while being suitable to
assess performance from a passenger centred perspective.





      

SQ 2 How can we characterise disruptions such that we can assess them during the
timetabling process?

As we considered disruptions in the strategical and tactical timetabling process, we estab-
lished that we could not rely on predefined scenarios. Therefore, we proposed detecting the most
critical disruption with an optimisation model. Besides, we limited the scope to the complete
blockage of sections between stations, similar to Szymula and Bešinović (2020) and Borecka and
Bešinović (2021). Furthermore, we constrained our evaluation of disruptions to the response
phase, when the system is in its steady disrupted state. A key argument for this limitation is
the insight of Zhu and Goverde (2020a). Zhu and Goverde (2020a) show that the start and end
of disruption affect the transformation of the system from the nominal to the disrupted state.
Further, existing work that considers a similar time context also omits the phases of survivability
and recovery (Szymula and Bešinović, 2020; Borecka and Bešinović, 2021). To summarise, we
managed to characterise disruptions by limiting the scope towards complete blockages and the
response phase. Furthermore, the primal-dual algorithm developed in Section 3.4 allowed us
to detect and accurately assess single or simultaneous critical disruption without relying on
predefined scenarios.

SQ 3 How to mathematically model the requirements and resources of the different
stakeholders to include them as constraints?

To provide a holistic indication of performance and resilience, we included the requirements
of all concerned stakeholders. As stakeholders, we identified the passengers as users as well
as the TOC as operator and the IM as an infrastructure provider. Consequently, we integrated
routing passengers, circulating vehicles and assigning tracks into timetabling. Existing research
demonstrates that integrating a selection of these tasks already leads to challenging models
(Polinder et al., 2021; Schiewe, 2020; Pätzold et al., 2017; Fuchs et al., 2021). Consequently, we
proposed to break down the complexity by using TSS, which restrict a scheduled train to run
within predefined time slots. The idea is similar to TPE used by Wang et al. (2020) and the SI
of Caimi et al. (2011b) and allows to formalise the requirements of TOC. Furthermore, we could
use the TSS to apply a logical-Benders decomposition to decompose the timetabling task into a
master- and a sub-problem. To tackle the master problem, we developed a network structure.
The structure allowed us to select a set of TSSs which minimise the generalised travel time for
passengers while the vehicle circulation is ensured. The sub-problem receives a set of selected
TSSs and solves the resulting timetabling problem, including track assignment. If no timetable
for a given set of TSSs exists, we add a constraint to the master-problem, thereby banning the set
of conflicting TSSs. We used an iterative approach and iterated between optimising and assessing
the timetable. To ensure a consistent perspective, all of the developed models in the iterative
approach rely on the TSS. Furthermore, TSSs are also capable of modelling buses as a response
to a disruption.





      

SQ 4 What are the benefits when using the developed optimisation approach to
enhance the resilience of an existing railway system?

We conducted a case study to evaluate our proposition. Our case study reflects the concrete,
real-life network of a Swiss railway operator, the RhB. Given that the network consists primarily
of single track sections, it is known to be a challenging environment for finding conflict free
timetables (Fuchs et al., 2021). Our initial experiments in Section 4.4 confirmed this insight, as
optimising with the proposed model was challenging with increasing problem size. However, as
we also proposed a heuristic procedure to obtain high-quality solutions in a shorter time (see
Section 3.3.6 and Section 4.1), we can overcome this challenge. A further crucial insight of the
initial experiments is that the proposed procedure to adapt a timetable to increase its resilience
against the critical disruption was applicable (Section 4.4.3). Consequently, we conducted a
second set of experiments, where we assessed the proposed iterative approach in its entirety. The
experiments confirmed the insights of the first set of experiments, as generally, the approach
enabled to increase the resilience of a timetable throughout the process. However, the results
varied depending on the demand structure and infrastructure utilisation. While we managed
to improve resilience in cases of low infrastructure usage, in some cases with more demand and
higher infrastructure utilisation, finding a high-quality timetable imposed a more demanding
challenge. Nevertheless, the iterative approach improved resilience for any of the submitted
instances. However, in some cases, this gain came at the cost of sacrificed nominal performance.
Thus, to maximise the value of our proposed approach, we provided all generated solutions to
the planners. They may then decide, which solution would be most suitable. Apart from these
benefits, our approach revealed insights into the location of critical disruptions. Furthermore,
the approach was helpful to assess the effectiveness of different responses, i.e., varying number of
buses. Thus, we can summarise that our proposition supports planners with timetables with
improved resilience while also guiding their attention towards critical disruptions and providing
insights into the effectiveness of specific measures to address a disruption.

With these answers to our research questions, we finalise the conclusion and complete the chapter
with recommendations for future work.

5.2 Future Work

As the final element of this thesis, we provide some directions for future work. We structure
these directions in three sections. Initially, we propose some future work considering the OM
in Section 5.2.1, before we focus the AM in Section 5.2.2 and the consider both jointly in
Section 5.2.3.

5.2.1 Future Work on the OM

Although the OM met our expectations, we identified some directions for future research. One of
these directions is naturally improving the performance by introducing further heuristics that
reduce the computation time. Another approach to improve its performance might be to use an





      

alternative formulation that relies on a path based formulation to route passengers, as suggested
by Szymula and Bešinović (2020). Although we specifically chose an arc-based formulation, it
remains to show if a path-based approach may be superior. One such case could be, when aiming
to improve a given starting solution obtained by the S-SSSP.

A second point worth investigating is to provide alternative means to adjust a timetable. Currently,
we rely on alternative routes that are redundant under normal circumstances. However, as we have
seen in Section 4.4.5, introducing redundant routes is sometimes out of scope, as the disruptions
separate the network in two components. Hence, introducing further means to increase resilience
could help here. A promising approach might be integrating the system in the local bus network,
as proposed by Jin et al. (2014).

Eventually, another path worth pursuing is assessing the sacrifice due to using TSS, compared to
an approach that considers integrated routing of passengers during timetabling, such that we
can assess the difference. However, for a fair comparison, the approach to compare with should
also route trains during timetabling, which is currently not done in any of the proposed models
(Schiewe, 2020; Polinder et al., 2021). Thus, such an evaluation is not straightforward.

5.2.2 Future Work on the AM

The AM also provides some interesting future research. Firstly, one might want to explore further
and utilise the possibilities to include more responses. Although we outlined some of these already
in the Primal-SSSP in Section 3.4.1, we did not assess them in the case study. Consequently,
assessing further measures yields additional insights.

Another possible adaptation is to adjust the normalisation procedure used in the primal-dual
algorithm. Currently, we use the number of simultaneously disrupted sections. However, this
normalisation implied that the critical disruption was always one single disruption during
the iterative assessments in the second round, likely due to the considered network and the
normalisation factor combined.

Similarly, one could also try to include an alternative way of providing the constraint of how many
links may be blocked. This alternative constraint could then also account for the probability
of failure, as, for example, done by Zhu and Goverde (2017). Consequently, the criticality of
disruption is characterised by performance and probability of occurrence. Naturally, it is also
worth considering implementing other forms of disruptions. For instance, partial blockages could
block some of the tracks but not the complete section. Likewise, one could introduce disruptions
where trains have to reduce the speed and thus occupy the disrupted section for a longer time.

5.2.3 Future Work on the Iterative Approach using the OM and AM

Eventually, when considering the complete iterative approach, one future research direction is
an extension of the TSS and SSSP to a non-periodic case. With this extension, one can then





      

assess the entire day rather than limiting the scope to the duration of one period. Similarly, one
could try to adapt the SSSP such that both assessment and optimisation are included in one
model. This way, one could also remove the need to specify a λ that forces some passengers on
redundant routes. Since the value of λ has to be defined manually, investigating the effect of
adjusting the λ on the iterative solutions is also a viable future working path.
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A Supporting Material for the Case Study

Here we list all supporting material.

A.1 Subset of Stations for Specific Purposes

Fig. 30 designates all stations, where transferring between trains is allowed in the OM.

Figure 30: Stations suitable for transferring in the OM are marked blue.
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Appendix A.1 designates all stations, where transferring between trains is allowed in the AM.

Figure 31: Stations suitable for transferring in the AM are marked blue.
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Appendix A.1 designates all stations, where two or more station tracks are available, such that
short turning is allowed in the AM.





      

Figure 32: Stations suitable for short turning trains in the OM are marked blue.
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A.2 Considered SAT Solvers

To solve the Boolean Satisfiability Problem (SAT) instances, different solvers are available. Since
the M-SSSP requires feedback in form of unsatisfiable cores from the SAT-solvers for conflicts in
the S-SSSP, we only use solvers that yield unsat-cores for unsatisfiable SAT-instances. All eleven
solvers included in the python-sat package provided by Ignatiev et al. (2018) allow extraction
of unsatisfiable cores. Consequently, we compared all the solvers in the package. We found,
that Glucose 4.1 provided by Audemard and Simon (2018) and MiniCard 1.2 by Liffiton and
Maglalang (2012) perform best, with the latter slightly outperforming the former.

A.3 Interactive Figures as html-files

To provide the readers of this thesis with additional material, several figures that visualise the
results of the computational experiments are available as interactive html files. Consequently, any
figure whose description is linked to this section is provided as html -file. These can be opened
with any browser and allow a more detailed inspection of the results. Thus, we provide html -files
instead of tables. The files can be found in the InteractiveHtmlFigures folder, submitted together
with the thesis. The name of the file corresponds to the figure id.
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